
Controlled Flight Into Terrain (CFIT)

The Problem That Never Went Away

Robert Sumwalt US National Transportation Safety Board

Gulfstream GII Accident

September 26, 1976 11 Fatalities

Hot Springs, Virginia

Cessna 401 Accident

October 24, 1976 Hot Springs, Virginia

0 Fatalities

A great CFIT resource!

Controlled Elight Into Terraining Aid

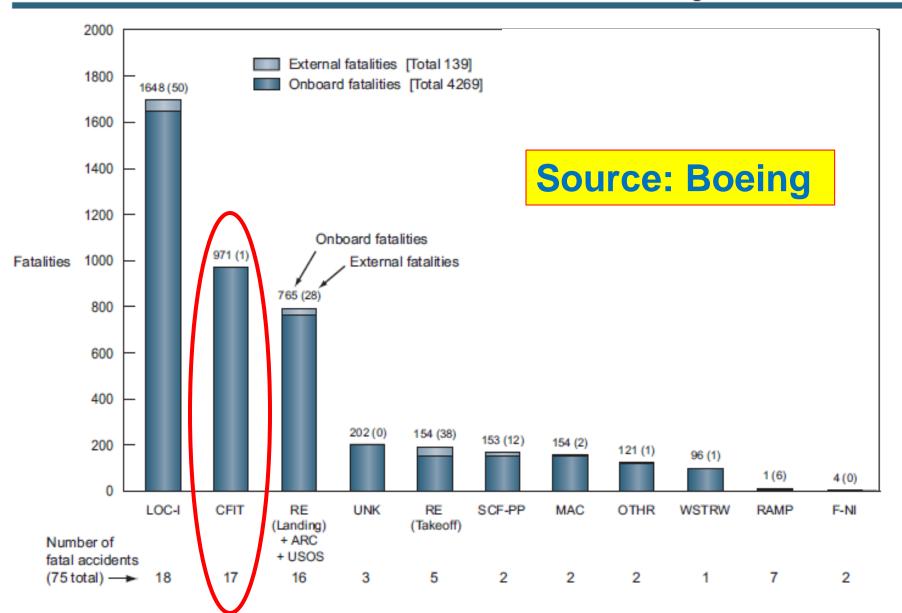
Flight Safety Foundation

U.S. Department of Transportation Federal Aviation Administration

CFIT Defined

When an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior <u>awareness by the crew.</u>

Source: CFIT Training Aid


In the past 3 1/2 years:

- CFIT has claimed over 500 lives in worldwide airplane crashes
 - In the vast majority of these crashes, the aircraft was not equipped with an operational TAWS.

Fatalities by CAST/ICAO Common Taxonomy Team (CICTT) Aviation Occurrence Categories

Fatal Accidents – Worldwide Commercial Jet Fleet – 2003 Through 2012

Date	Location	Aircraft type	Fatalities
3 February 2014	Oklahoma, USA	Cessna 525	0
8 April 2014	Alaska, USA	Cessna 208	2
19 April 2014	Mexico	BAe-125-700	8
8 May 2014	Colombia	DC-3	5

Source: Don Bateman (Honeywell); NTSB files; Jim Burin (Flight Safety Foundation)

Date	Location	Aircraft type	Fatalities
23 January 2013	Antarctica	DHC-6	3
29 January 2013	Kazakhstan	CRJ-200	21
4 March 2013	Congo	Fokker 50	0
13 April 2013	Indonesia	Boeing 737-800	0
10 October 2013	Malaysia	DHC-6	2
16 October 2013	Laos	ATR-42	49
19 October 2013	Papua New Guinea	ATR-42	0
3 November 2013	Bolivia	Metro III	8
10 November 2013	Ontario Canada	Metro IV	5
29 November 2013	Alaska. USA	Cessna 208	4
2 December 2013	Puerto Rico	Metro III	2
26 December 2013	Russia	An-12	9

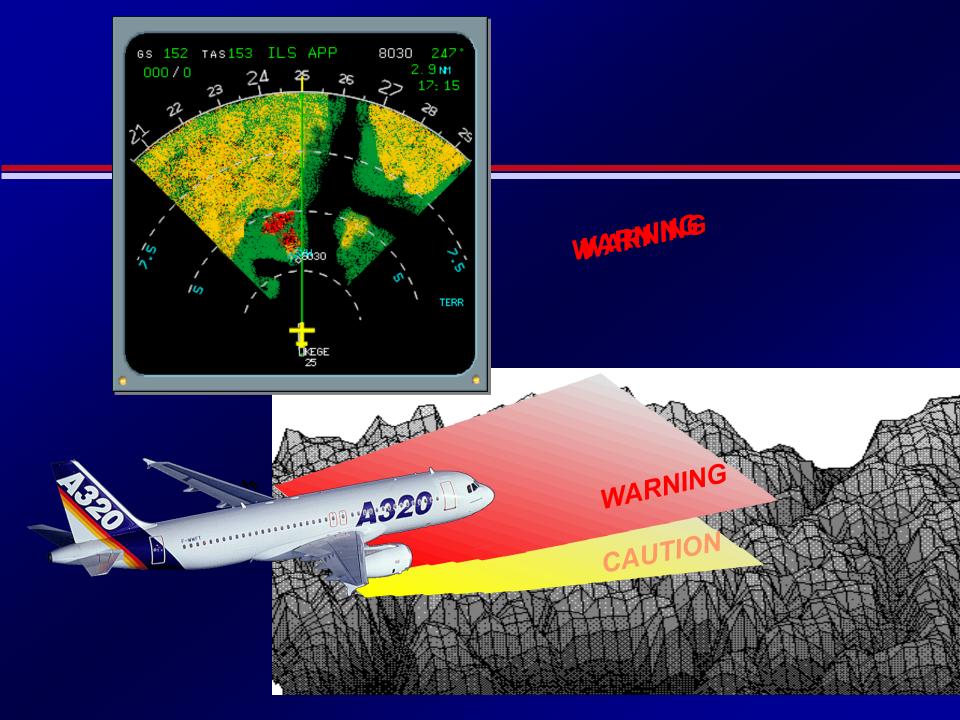
Date	Location	Aircraft type	Fatalities
30 January 2012	Congo	An-28	2
15 March 2012	Sweden	C-130J	5
9 May 2012	Indonesia	Su-95	45
14 May 2012	Nepal	Dornier 228	15
22 June 2012	West Virginia, USA	Beech King Air C90GT	1
19 August 2012	Sudan	An-24	31
12 September 2012	Russia	An-28	10
30 November 2012	Congo	IL-76	32
17 December 2012	Peru	An-26	4
18 December 2012	Montana, USA	Beech King Air 100	2
25 December 2012	Myanmar	Fokker 100	2

Date	Location	Aircraft type	Fatalities
2 February 2011	Congo	L-410	2
2 February 2011	Honduras	L-410	14
8 February 2011	South Africa	PC-12	9
4 April 2011	Congo	CRJ-100	31
20 June 2011	Petrozavodsk	TU-134	44
6 July 2011	Kabul	IL-76	9
10 July 2011	Congo	Boeing 727	63
9 August 2011	Russia	An-24	0
20 August 2011	Canada	Boeing 737-200	12
7 September 2011	Bolivia	SA-227	8
25 September 2011	Nepal	Beech 1900D	19
29 September 2011	Indonesia	Casa 212	18
23 November 2011	Arizona, US	Aero Commander 690	6

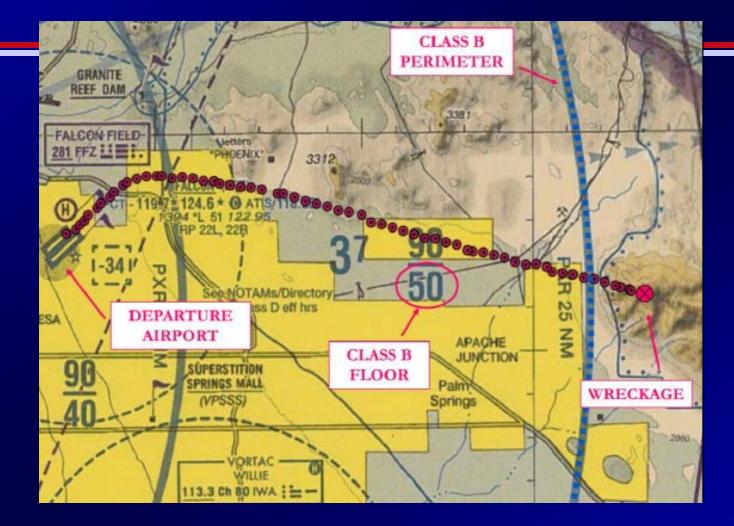
Helicopter CFIT in United States: 2008 - present

- Since January 1, 2008 present:
 - 22 Helicopter CFIT accidents in US
 - 37 Fatalities

Don Bateman



Terrain Warning and Alerting System (TAWS)



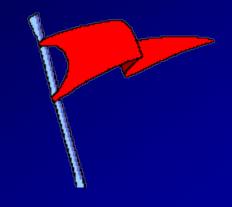
TAWS

- Worldwide terrain database
- Through GPS and FMS, the system knows aircraft position and altitude
- Scans ahead to check for terrain threats
- Provides aural and visual WARNINGS/ CAUTIONS up to 60 seconds before predicted terrain conflict

Probable Cause

- The pilot's failure to maintain a safe ground track and altitude combination for the moonless night visual flight rules flight, which resulted in controlled flight into terrain.
- Contributing to the accident were the pilot's complacency and lack of situational awareness and his failure to use air traffic control visual flight rules flight following or minimum safe altitude warning services.
- Also contributing to the accident was the airplane's lack of onboard terrain awareness and warning system equipment.

A Threat & Error Management (TEM) Approach to Reducing CFIT


"Threats"

- Those things that can increase the operational complexity, and if not handled correctly, can decrease the safety margins
 - Weather
 - Delays
 - Mechanical Malfunctions
 - Stress

- Time pressure
- Distractions
- ??

Threats

- Threats
 - Threats can increase error potential
 - Threats "put holes in" or weaken our barriers against error
- Threats = Red Flags

Be aware of threats!

- "Snakes in the grass"
 - What are the things that can bite you on this flight?
- We want crewmembers to <u>identify</u>, <u>talk</u> about and <u>think</u> about threats, and
- those things that are <u>different</u> about this operation or flight
 - Unfamiliar airport
 - Flying with new pilot
 - New procedures

- This puts the threats in the employees "mental RAM" and makes it readily available for retrieval
 - Example: mentally rehearse CFIT escape maneuver

ndustrial average rises falls 7.24 to 1046.15; 30t 6.58%. 1,3B.

uhen, 3, is buried; she hit by gunfire on Los pect arrested. 4A.

administration walks mmitment with pledge ign relations, 9A.

epreneur Sir Freddie unch U.S.-based transrida to Britain. 1B.

r Viswanathan Anand, , beats reigning champ rry Kasparov in the th game, breaking ses of draws and recordthe first win in Profesnal Chess Association rid championship in w York, 13C.

ELANY DIES: ssie Delany, second ick female dentist in

"To err is human"

"Errar e humano"

Why error management?

- Traditional thinking focused on eliminating human error in aviation
- Contemporary thinking acknowledges that error is a way of life
 - given the acceptance that human error may occur, the focus has become "How do you effectively manage error?"
 - proper error management greatly enhances safety

Errors will occur

"So we must create an error management system in which the crew recognizes and corrects errors before negative consequences occur."

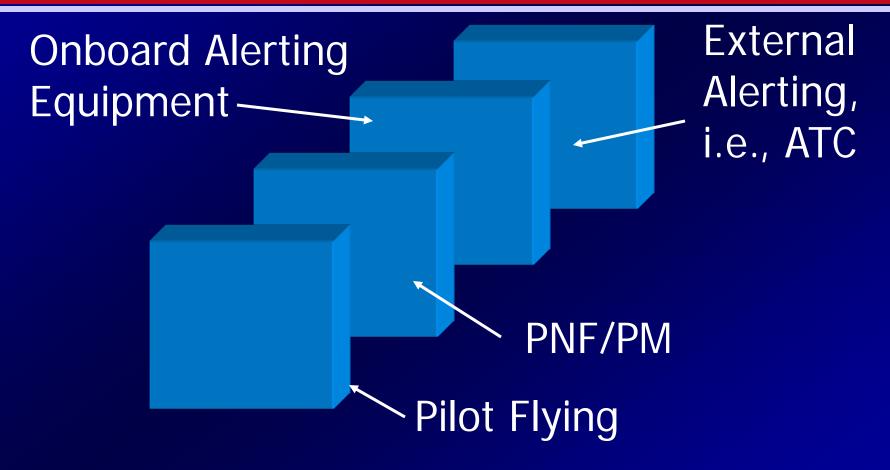
> - Captain Frank J. Tullo "Aviation Week and Space Technology" May 21, 2001

Threat and Error Management

Helps us avoid and trap errors.

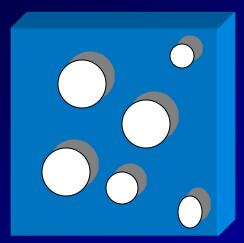
Avoiding Errors

- Good training
- High levels of proficiency
- Following SOPs
- Minimizing distractions
- Planning ahead
- Maintaining situational awareness
- CRM the effective use of all available resources



Trapping Errors

- Once an error is committed, it is difficult to catch (trap) your own error
- Other people are often more likely to catch your error
- Therefore, <u>redundancy</u> is one strong defense against error


Layers of Defense (barriers) to trap crew errors

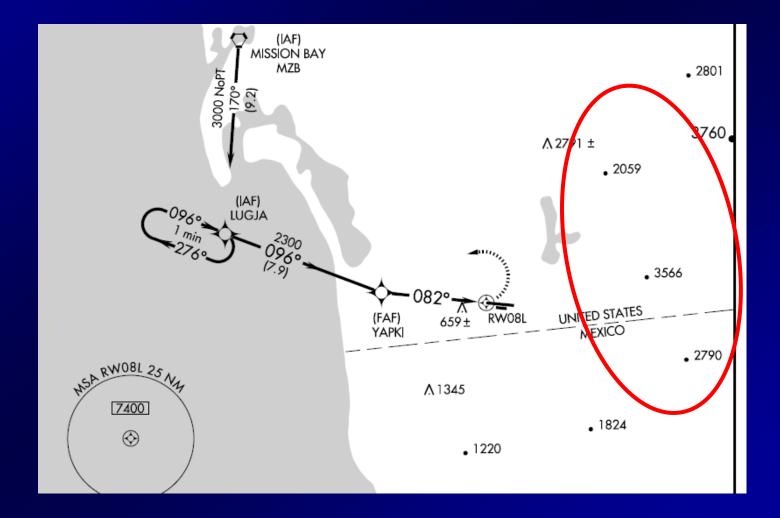
Examples of how "holes in defenses" can be formed

- Increasing workload
- Time pressure
- Fatigue

- Procedural noncompliance
- Poor crew coordination
- Interruptions / Distractions

Layers of defense help deflect errors from becoming hazards

Error


Error Trapped. Hazard Averted

Potential

Hazard

Learjet 35A October 24, 2004 San Diego, CA 5 Fatalities

SAN DIEGO, CA BROWN FIELD MUNI

DEPARTURE PROCEDURE: **Rwys 8L,8R,** climbing left turn. **Rwys 26L,26R,** climbing right turn. **All aircraft** climb heading 280° to intercept MZB R-160 northwestbound to MZB VORTAC.

Holes in defenses

ATC does not issue MSAW

Accident

F/O does not get weather

Error – crew does not follow terrain avoidance procedure

No TAWS

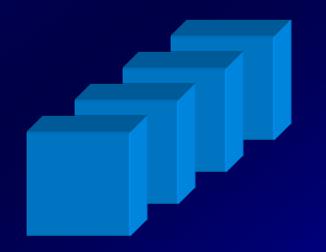
Captain decides to depart without IFR clearance

Probable Cause

The failure of the flight crew to maintain terrain clearance during a VFR departure, which resulted in controlled flight into terrain; and,

The air traffic controller's issuance of a clearance that transferred the responsibility for terrain clearance from the flight crew to the controller, failure to provide terrain clearance instructions to the flight crew, and failure to advise the flight crew of the MSAW alerts.

Contributing Factors


Contributing to the accident was the pilots' fatigue, which likely contributed to their degraded decision-making.

Acknowledge that we are error prone

- This does not mean that errors are okay
 - Naturally we would prefer not to make them
 - However, the reality is that we will make mistakes, so acceptance and awareness are vital
- Acknowledge that threats can affect performance

Acknowledge errors

Realize the importance of redundancies

- Keep as much redundancy in the operation, for as long as possible
- Plan best time for being "out of the loop" (split cockpit)
 - lowest workload
 - least risk
- Both pilots "cross-verify" critical checklist items ("killer items") and ATC clearances

Flight Crew Example:

- Climbing out of 10,000 feet, with clearance to 12,000
 - Timing of "10,000 foot announcement"

Planing and awareness are the keys

- We're not saying don't do these things obviously you must do them
- The point is to PLAN them (when able) to conduct them during lowest workload, least risk periods
- We realize that not everything can be planned, so when one pilot is out of loop, be very aware of reduced redundancy

Communicate Threats and Intentions Effectively

Communicate

Anything that can:

0

- Reduce your ability to detect errors
- Anything that can increase your chance of making errors

Communicate

Communicate threats

"Snakes in the grass

- What are the things that can bite you on this flight or operation? Identify, discuss and think about these things (threats) and those that are
- different about this operation

Communicate

Ways communications can be improved

- Research shows that the way a crew communicates can be a predictor of the way that the crew performs.
 - Crews who communicated better were those crews who made fewer errors

Improving communications

- Improved performance (i.e., fewer errors) was associated with crews who showed increased number of :
 - commands
 - inquiries
 - acknowledgements
 - verbal observations about flight status

- Foushee & Manos (1981)
- Foushe, Lauber, et al (1986)

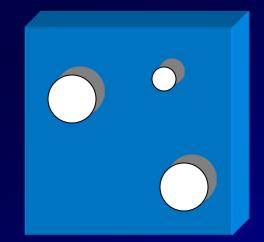
Communicate

"Hint and Hope"

- Someone drops a subtle hint, hoping the other person will get the message
 - Ineffective
 - Very Risky

Communicate

Effective Assertion Model


- 1. Opening
- 2. Statement of Concern
- 3. State the problem
- 4. Propose a solution
- 5. Achieve agreement

Pilot Example: Robert, I'm concerned. There is high terrain to the east. I think we should get our IFR clearance before we depart. What do you think?

Distractions and Interruptions

Distractions & Interruptions can form "holes in defenses"

Manage **Distractions**

Distractions & Interruptions are Red Flags

 Treat Distractions and Interruptions as Red Flags

Manage **Distractions**

"Interruptions Always Distract"

I A D

Identify – the interruption

Ask – what was I doing before being interrupted?

Decide – what action to take to get back on track

Manage Distractions

Follow SOPs

Standard Operating Procedures

Accident Prevention Strategies

Hull-loss Accidents over 10 Year Period

Percentage of Accidents									
Primary Factor	10	20	30	40	50	60			
Pilot Flying (PF) adherence to procedure Other operational procedural considerations Pilot Not Flying (PNF/PM) adherence to procedure Embedded piloting skills Design improvement Captain or instructor pilot exercise of authority Maintenance or inspection action Approach path stability ATC system performance First officer's cross-check performance as non-flying pilot Go-around decision Runway hazards			Each bar	represen accidents instance	ts the per s that con of the lis	Fatalities rcentage of tained at			

Source: Boeing study of accident prevention strategies

Accident Prevention Strategies

Hull-loss Accidents over 10 Year Period

Percentage of Accidents										
Primary Factor	10	20	30	40	50	60				
Pilot Flying (PF) adherence to procedure Other operational procedural considerations Pilot Not Flying (PNF/PM) adherence to procedure Embedded piloting skills Design improvement Captain or instructor pilot exercise of authority Maintenance or inspection action Approach path stability ATC system performance First officer's cross-check performance as non-flying pilot			Each bar	represen	ts the pe	Fatalities rcentage of				
Go-around decision Runway hazards			hull-loss accidents that contained at least one instance of the listed prevention strategy.							

Source: Boeing study of accident prevention strategies

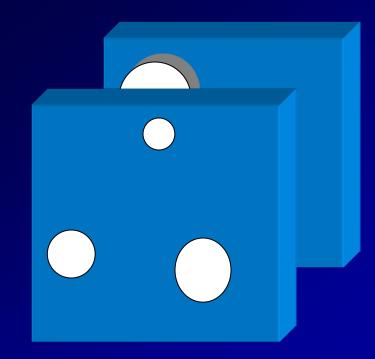
How SOPs relate to error

 Line Operations Safety Audit (LOSA) data show that crews who intentionally erred by not following SOPs were 3 times more likely to commit another error with consequential results

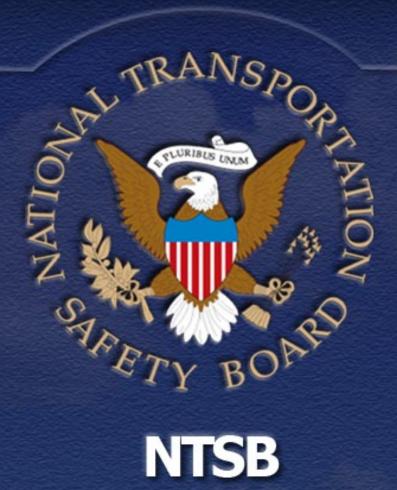
"Normalization of Deviance"

Standard Operating Procedures

- SOPs establish a consistent baseline for performance
- Because the baseline is established, deviations from it can be identified easier
 - "Hmm, I don't usually miss things like that."
- Allows crewmembers to concentrate on issues not covered by SOPs


Sensible?

Sensible?


 Ask yourself and make sure that what you are doing (and are about to do) is sensible

- A Acknowledge
- B Barriers
- C Communicate
- D Distractions
- S SOPs
- S Sensible

