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ABSTRACT

Author: Jérdme H Travert

Title: FLIGHT REGIME AND MANEUVER
RECOGNITION FOR COMPLEX MANEUVERS

Institution:  Embry-Riddle Aeronautical University
Degree: Master of Science in Aerospace Engineering

Year: 2009

The purpose of this study is to demonstrate capability of flight regime recognition during
complex maneuvers flown in a fixed wing airplane using measured data from an Inertial Mea-
surement Unit (IMU). Flight Regime Recognition (FRR) is required for numerous applications
in the aerospace and aviation industry, including the determination of loads for stress and strain
analysis. It can also be used in recreational aviation for maneuver recognition, for example in
aerobatics.

This study uses a flight simulator to generate representative flight data that is parsed by
a specifically developed algorithm into appropriate flight regimes. This algorithm is a filter tech-
nique that uses states based on the aircraft’s attitude, accelerations and rates and compares them
to known trajectories for the identification of specific maneuvers. Particular care has been taken
to ensure appropriate noise rejection and tolerance to errors in the realization of the maneuver.

Presented here will be a particularly challenging test case of identification of complex
aerobatic, aresti maneuvers, from specific flight trajectory. Results are conclusive in terms of
regime recognition but further testing of the maneuver identification algorithms will be necessary

in order to derive a robust maneuver recognition program.
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1 INTRODUCTION

The need for flight regime recognition is very present in aircraft maintenance and continued
airworthiness: knowing the events the aircraft has seen in his lifetime are of great help for
maintenance actions, failure prevention and life extension[1][2][3]. It can also be used, as in this
study, for a different purpose: telling how maneuvers were flown, which can help a pilot to try
improving his maneuvering skills, an instructor tell what his student did wrong, or a competition

judge grade an aerobatic program.

1.1 Flight Regime Recognition

Flight regimes are specific conditions under which an aircraft flies. In a standard commercial
airplane flight, regimes usually seen include take off, climb, cruise, loiter, descent and landing.
Real-time flight regime recognition can allow an autopilot to automatically select its functioning
mode when triggered, or to correct for a mistake in mode selection, allow a pilot take measures to
avoid regimes that present a danger for the safety of the aircraft, or an instructor help his student
improve his flying skills with well defined metrics. Post-processing flight regime recognition can
help the technicians maintaining an aircraft to know the solicitations seen by the different parts
of the vehicle, and deduce necessary maintenance actions to be taken on those parts[4][5][6].

In the case of maneuver identification, the picture is slightly different since the regime
recognition is used for another purpose: sequencing flight legs and aircraft attitude for recon-
struction of its flight. This can be done straight from flight data, but the analysis of an aircraft’s
flight from raw data is a very time consuming process, and requires advanced methods such as
neural network[7] in which neither the candidate nor his supervisor had prior knowledge, and

was therefore not considered.



1.2 Pattern Recognition

Pattern recognition is the analysis of data, searching for known motives, in our case, for regimes
and then specific sequences of regimes flown by an aircraft. Classical pattern recognition al-
gorithms used for example in optical and speech recognition first involve isolation of possible
pattern from the rest of the data, sometimes called filtering, then some kind of treatment to see
the major features of the studied data, and finally tries to match the figure it has seen to one of
several known reference patterns[7][8].

In this study, two pattern recognitions are performed: the first one for regime recognition
at each time step, comparing flight data to reference values to find major traits of the flight and
classify the aircraft’s behavior into flight regimes, and a second one for identification of flight

regimes sequences to one of the catalog’s maneuvers.

1.3 Competitive Aerobatics

Aerobatics are the practice of flying maneuvers that are not used in normal flight, for entertain-
ment of both the pilot and his public. It explores all dimensions of its flight domain -horizontal
plane as well as altitude and aircraft rotations- and often gets close to the aircraft’s limitations.
Competitive aerobatics is the use of aerobatics skill for competition. Applications of similar
practices also include in-flight demonstration, which shows aircraft capabilities, generally for
commercial purposes, and combat, where the pilot tries to take advantage on his opponent using
his piloting skills and his aircraft’s maneuverability.

Aecrobatic maneuvers are sequences of aircraft attitudes and are regulated and rated for
competition. Grades are traditionally given by judges who observe the maneuvers by eyeball,
from the ground, with well-defined criteria[9]. This way of judging flight skills suffers from
some drawbacks, one of which is being accused of subjectivity. A solution to that can be found
by the addition of a computer that helps the judges know how the maneuver was flown, and

removes the subjectivity.



2 SCOPE AND APPLICABILITY

Many applications using Flight Regime Recognition have been designed for usage monitoring
of aging military aircraft[2][5][6], but FRR for commercial and general aviation aircrafts has
been subject of little investigation available in the public domain, including at Embry-Riddle
Aeronautical University[1][4] and in the aerospace industry[3], even though it would bring the

same improvements in these fields as it would to the military aviation.

2.1 Problem Statement

General aviation and commercial FRR algorithms available in the public domain cover most
common regimes for a normal cross country flight, and do not address atypical regimes seen for
example in aerobatic and demonstration flights. Such regimes are however especially demand-
ing for aircraft structures and should enter into consideration when monitoring flight loads on
aircrafts that see them on a regular basis. The demonstration of capability for Flight Regime
Recognition in complex maneuvers is therefore an important step in aircraft usage monitoring.
The case of interest of this study is aerobatic maneuvers, and one application of Flight
Regime Recognition is flight legs reconstruction, which is also of interest in this field: being
able to determine the sequence of regimes seen by an aircraft allows determining how well the
intended program was performed, or identification of maneuvers that were flown. Advanced
maneuver identification is of great interest for competitive aerobatics ratings as well as training

and for flight instruction in general.



2.2 Literature Review

Flight Regime Recognition has been studied extensively for rotorcraft aging and fatigue analysis
for all sorts of helicopters: commercial[3], military[2][5][6] and general aviation[4].

For military aircrafts, the cost of data acquisition and treatment is usually not a limit-
ing factor, and complex data acquisition systems and detailed algorithms have been used. For
example the US Army Integrated Mechanical Diagnostic System (IMDS) records 16 parameters
for filtering and decomposition into 635 very detailed regimes, sometimes with very small differ-
ences between two regimes[2]. This leads to complex and time consuming treatment, that could
induce a high cost for both the flight recorder and the post-treatment station. .

On the other hand, general aviation FRR algorithm are more modest and only use limited
data channels for regime recognition as well as a reduced set of regimes that aims at qualifying
the flight profile rather than quantifying flight loads with great details[1]{4], which means large
scale application expect a limited cost for the flight recorder as well as the treatment station.

Approaches used are however very similar, using the range in which each parameter is
to allow classification of the current flight regime in a specified set. Only the level of detail
differs: where military algorithms decompose the flight into dozens of different regimes, general
aviation algorithms use less than 10 regimes.

All these studies aimed at helicopter structural monitoring, and very few applications
of FRR algorithm in fixed wings aircrafts have been found. A study of general aviation fixed
wing aircraft loads was conducted at Embry-Riddle Aeronautical University by David Kim[1].
It used a neural network approach to find a relationship between the flight parameters and the
loads seen by different parts of the aircraft for a set of regimes seen in normal operation. Results
showed that a classification of the flight parameters into regimes along with the neural network
operation provided better results and a Flight Regime Recognition algorithm was developped for
that purpose. It used a neural network approach to classify the flight maneuver into 5 different
types to allow more accurate prediction of the flight loads.

The results of Kim’s study were conclusive for regime recognition in 5 simple maneu-

vers that were estimated sufficient to cover the range of normal general aviation airplane usage.
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2.3 Objectives

This study aims at demonstrating Flight Regime Recognition capability for complex, aerobatic
maneuvers that involve unusual flight regimes and transitions, with a minimum data set and
a possible real-time implementation. The set of regimes is more evolved than those used for
general aviation airplanes as it is not limited to normal cross country operations, but whole of
competitive aerobatics flight domain.

This study also intends to identify maneuvers flown, gathering time dependent flight
regimes into maneuver legs in order to enable a qualitative evaluation of the flight that could
eventually lead to a quantitative grading of the program flown. For that purpose the flight regimes
are limited to a reasonably-sized set to allow identification of flight legs from the flight regimes

history with just enough details to describe the flown maneuver.



3 FLIGHT REGIMES RECOGNITION ALGORITHM

Aerobatic maneuvers are the combination of a flight path and rotations of an aircraft along its
pitching and rolling axes. They are combinations of six basic regimes: lines, turns, loops, rolls,
spins and tailslides[10]. In power competition, lines can be flown at 5 different angles from the
horizontal line: 0°, 45°, 90°, -45° and -90°[10]. A maneuver is a sequence of flight regimes, and
determining, at each time step, in which regime the airplane flies is the first step for maneuver

identification.

3.1 Flight Regimes Used for Aerobatics

In this study, rolls and spins have been treated differently, as they are elements that superim-
pose on other regimes, and not regimes by themselves. Spins have been neglected as they only
bring complexity to the recognition algorithm, and can be added once a good understanding of
maneuver identification is achieved. This gives us a total of eight basic regimes:

o Level flight: 0° straight line

¢ Turn: heading change at high bank angle, aircraft stays on a horizontal plane

e Climb: +45° straight line

o Descent: -45° straight line

o Vertical Climb: +90° straight line

o Vertical Descent: -90° straight line

o Loop: progressive change in flight path angle, aircraft stays on a vertical plane

¢ Tailslide: airplane goes down tail first

All these regimes can be flown with addition of rolls, and can also be flown in two
different ways: with positive or negative normal load factor (except for vertical lines, which
are supposedly flown with a normal load factor of 0), which gives us two additional flags that

superimpose on the regimes: a roll flag, as well as a “negative load factor” or inverted flag.



3.2 Flight Regimes Characterization

Flight regimes were studied to find relevant parameters for their characterization. Parameters
were added until each regime would be a unique combination of flight data. Table 1 summarizes

regimes characteristics.

Pitch rate (g) is the first parameters to distinguish lines from loops: a 0°/s pitch rate means
the aircraft’s flight path is close to a straight line, a different pitch rate means the aircraft
is either flying in a loop or a turn.

Pitch angle (6) allows distinguishing lines from each other. This would preferably be
done using flight path angle (except for Diagonal Lines, where the criterion is attitude and
not flight path), but simpler measurement made pitch angle the variable of choice. The
difference between flight path and pitch angle is to be accounted for by higher tolerances
in detection of flight parameters. For Horizontal lines, it was considered redundant with
the load factor criterion.

Yaw rate (r) is used to tell loops apart from turns: the turn is the only regime where a yaw
rate should be present: a non-zero yaw rate means the airplane is in a turn, a non-zero
pitch rate with no yaw rate means it is in a loop.

Airspeed is also measured for Tailslide detection: it is the only regime flown at a negative
airspeed. In the algorithm presented in this study, True Airspeed (TAS) was used, but since
it is only for sign discrimination, standard measurement of airspeed (Indicated Airspeed)
or even axial speed of the aircraft (u, from an IMU) should be acceptable.

Roll rate (p) characterizes rolls.

Load factor (IV;), more accurately normal load factor, is required for the inverted flag,
which is to be active when the load factor is negative. For aerobatics rating, vertical and
horizontal lines have criterion in terms of load factors, which are also taken into account.

Bank angle (¢) is also taken into account as a redundancy check for ensuring a turn is
performed accordingly to grading criterion which states “Turns should be flown at bank
angles of at least 60°’[9].



Regime [ TAS [ N, (9) [pC®/s) [ qCls) | r Cls) [ ¢ (O) | 6(°)
Level Flight | >0 | = +1 0 0 0 0 =
Turn | >0 X 0 %0 %0 | >60| =
Climb | >0 X 0 0 0 0 =~ 45
Descent | >0 X 0 0 0 0 =~ —45
Vertical Climb | >0 ~0 0 0 0 X = 90
Vertical Descent | > 0 ~ 0 0 0 0 X =~ —90
Loop | >0 X 0 %0 0 0 X
Tailslide | <0 X 0 X X X X
Roll | X X % 0 X X X X
Inverted | X <0 X X X X X

Table 1: Characterization of flight regimes
X representing a non-specific value.

3.3 Flight States

Flight states are used for identification of a flight regime. They tell whether a flight parameter
is equal (respectively different) to a reference value, with a certain tolerance to account for
approximations and noise. Each states activity is a value taken between 0 and 1 depending on
how close the parameter is to the reference value, 0 meaning completely off (respectively close)
and 1 very close (respectively very different). States are an intermediate step between flight data
and regime recognition, derived from table 1 values of flight parameters, and listed in table 2.
The states that tell whether a parameter z is close to a reference value . or not are
computed using a function f of the distance Az = z — z,.s given in equation 1, where K is
computed to satisfy the third criterion: K = _In(2) " and plotted for the (|V,| = 1) state in

tolerance

figure 1. This function was designed for the following characteristics:

e f(Az)~ 1 when Az < } x tolerance
o f(Az) = 0when Az > 2 x tolerance

e f(Az) = 0.5 when Az = tolerance
f(Bz) = emHxos! ()

For states that tell whether the parameter is far from a reference value (all 5 0 states), the

function defined in equation 1 is subtracted from 1 to get the states activity: state = 1 — f(Ax).

8



State Application

[N, =~ 1 Level Flight characterization
N, %0 Vertical Lines elimination
N, <0 Inverted status
d = 45°
Pt O
g N 30450 Lines discrimination
# ~ —90°
Tailslide characterization
TAS <0 All other regimes elimination
%0 Roll detection
P Level and Loop elimination
Loop characterization
970 Lines elimination
r a0 Turn characterization

Loop elimination
¢ % 0° or 180° | Turn elimination

Table 2: Flight states used for regime identification

1F . -

05t \ ]
0 ]

1 1 H L X H i

-4 -3 -2 -1 ] 1 2 3 4

Figure 1: State |N;| =~ 1 as a function of N, (tolerance=0.5)

This is used for computation of all states except N, < Oand TAS < 0, which are treated
individually, because of their particular aspect. The airspeed state, TAS < 0 is the only non
continuous state, as it is very unlikely that an airspeed close to 0 is maintained in a non-transient
way. It is defined as the logical result of comparing TAS to 0. The inverted state, however
requires a continuous definition since a Og load factor often happens, and close to 0 but positive
values could be seen in inverted legs. The definition chosen in this case is a multi-linear function
defined as: 1 when NV, < 0, 0 when IV, > 0.5 and the linear interpolation 2 X (0.5 — N,) in

between.



3.4 States to Regimes Transition

The states to regime transition is performed using an adaptation of table 1 to the states, ar-
ranged in a vector for easier manipulation. The probability of being in each regime is de-
ducted from the applicable states. It is computed for all regimes using matrix multiplication:
{regimes} = [H] x {states} where the states are ordered as in table 2, the regimes as in table 1,

and H is an adaptation of table 1, tuned for correct regimes detection throughout all test flights:

o °o % % 2 3 Y o

A VAR U =N | [ o o o ©

A A -

1 0 0 -1 -1 -1 -1 -1 =7 =7 =5 0 | LevelFlight

0 0 0 -1 -1 -1 -1 -1 -1 0 1 -1| Tum

0 0 0 1 0 0 0 0 0 -7 0 0| Cimb

0 0 0 0 0 1 0 0 0 -7 0 O | Descent

0 -4 0 0 1 0 0 0 0 -7 0 0| vClmb
"= 0 -4 0 0 0 0 1 0 0 -7 0 0 | VDesen

0 0 0 0 0 0 0 -1 -7 1 =5 0 | Loop

O 0 O 0 0 0 0 1 0 0 0 0 Tailslide

0 0 0 0 0 0 0 0 1 0 0 O | Re

0 0 1 0 0 0 0 0 0 0 0 0 | Invened

This whole process is the flight regime recognition algorithm used in this study, and
gives conclusive results when proper tolerances are set in the states determinations process. It
is to be expected that those tolerances can vary from one aircraft to another, or from a pilot to
another: even though judging criteria don’t vary, it is important to make sure the flight states are
in agreement with what was intended by the pilot. For instance, the initial tolerance on pitch rate
(8°/s), adapted to Dr. Anderson’s flights has proven to be too high for Mikhael Ponso’s flights,
who is pulling his loops with a lower pitch rate (around 6°/s).

A possible way of accounting for those differences is allowing calibration of tolerances

10



States Tolerance K value
N,=~1
N, %0 0.5 11.09
0 = 450 ° -5
0 — —a5° 10 7 x 10
6 = 90° . 6
90— _o0° 20 4.33 x 10
p#0 40°/s 2.7 x 1077
$#0 15°/s 1.4 % 107°
Dr. Anderson | M. Ponso | Dr. Anderson { M. Ponso
q#0 8°/s 5°/s 1.1x 1073 | 1.7x107°
r0 5°/s 10°/s 1.7 x 1074 7 x 1075

Table 3: Tolerances used for states determination

by flying a sustained leg in each regime prior to starting the aerobatics sequence. The tolerances
used for each pilot are shown in table 3 and were determined by tuning for proper regime recog-
nition as well as for respecting aerobatic ratings criteria. For example, the tolerance on (6§ = 90°)
is high since the judging criteria is not based on pitch angle but vertical flight path, which is seen
on IMU data by a N, value of 0. The FRR algorithm requires knowledge of @ so it does not con-
sider vertical climb if the pitch angle is small, even if the load factor matches the requirement
(N, = 0). For this particular regime, the considerations are inverted because of initial choice, but
similar results are expected using either a (8 ~ 90°) —b (N, % 0) ora’ (6 = 90°) +b' (N, ~ 0),

with tolerances and coefficients adapted to each case.

11



4 AEROBATIC MANEUVERS IDENTIFICATION

A standard pattern recognition algorithm was used for maneuver identification from flight regime
evolution. It is done by 2 important steps: the organization of regimes into “words” that we
call maneuvers and the identification of the maneuver seen to one of the known maneuvers. It
requires knowledge of possible maneuvers to which the reconstruction from flight data will be
compared for identification.

Aerobatic maneuvers are referenced for competition in a catalog named the Aresti cat-
alog, after the Spanish aviator José Luis de Aresti Aguirre, its first designer. The Fédération
Aéronautique Internationale (FAI) Aresti Aerobatic Catalog, version 2003-1 was used as list of

reference maneuvers in this study.

4.1 Aresti Notation

Before exploring the details of maneuver identification, a quick description of Aresti’s notation
of aerobatic maneuvers is probably necessary. This notation consists of a graphical represen-
tation of the trajectory of the center of gravity of the airplane, usually in a vertical plane that
contains it (except for turns), with rolls superimposed on the trajectory, as illustrated in table 4.
A few more rules are useful to understand this notation:

Maneuvers start and finish in level flight (horizontal line).

Entry in the maneuver is represented by a dot while its exit is represented by a cross-line.

Lines can only be inclined by a multiple of 45° from the horizontal line.

Legs flown with positive angle of attack are represented with a solid line while a dashed
line represents portions of the flight where the angle of attack is negative,

Angles will replace circular arcs of less than 180° to make the visualization simpler.

Some maneuvers (turns and rolling turns) consist in out of the plane motion that requires
switching the representation from the vertical to a horizontal plane.

12



Figure Representation Description (leg by leg)

Loop Pull 360°

Turn Turn 180° at constant altitude

Roll Roll 360° at constant altitude

Pull 180°

Immelmann Roll 180°

Pull to 45° pitch angle
Maintain pitch angle
Push back to level flight

Climb

Push to vertical descent
Maintain vertical flight path
Pull back to level flight

Dive

Pull 225°

Maintain pitch angle
Roll 180°

Maintain pitch angle
Pull back to level fight

Half Cuban

N = \U WD

Pull to 45° pitch
Maintain pitch angle
Roll 180°

Goldfish Maintain pitch angle
Pull 270° to 45° pitch
Maintain pitch angle
Push back to level flight

Table 4: Aresti representation of simple maneuvers




4.2 Maneuver Representation

Maneuvers (analogically referred to as “words”) are combinations of legs (“letters”) that are

characterized by several things:

¢ Regime of the leg, one of the 8 basic regimes (see table 1)
o Length of the leg flown, measured in terms of a parameter relevant to the given regime:

— horizontal length for Level Flight

- altitude change for Lines (except horizontal) and Tailslides
— pitch angle change for Loops

- heading change for Turns

¢ Roll status: whether a roll is flown during the leg (and its length)

o Inverted status: whether the status was flown with positive or negative load factor

Changes in flight regime throughout the flight are detected by gathering consecutive
data points that share a common dominant regime, and give a decomposition of the flight into
a sequence of legs, forming the *“sentence” that describes the flight. Legs which have a small
parameter change are removed to get rid of the transient regimes. Level Flight legs with no rolls
and that are at least 100ft long are used as separations that allow breaking the sequence of legs

into several maneuvers, analogically, spaces that allow separating words in a sentence.

14



4.3 Error Correction

Each flown maneuver is then compared to each of the reverence maneuvers to know which is
the closest one, and identify it, to give it a name and so on. Possible errors in the realization
of a maneuver or data treatment are considered to allow better recognition and matching of the

maneuvers. Errors considered are described here:

Leg alteration: Measurement of legs’ length is not perfect and it is possible that the
distance measured does not match the reference distance. To account for that, an error
of 20° in a loop’s length has a small impact on recognition, and bigger errors are also
allowed, but have higher cost in terms of proximity to the reference maneuver.

Leg addition: It is possible that an additional leg is seen during the maneuver, the most
obvious example being a loop with little hesitation that lead to the addition of a line in the
middle of two parts of the same loop.

Leg suppression: A leg in a maneuver could not be seen when trying to match a maneuver
to its reference version, for example a line between two sections of a loop could be too
short to be seen by the algorithm, resulting in a continuous loop leg instead of 2 loop legs
separated by a line leg.

Leg replacement: In case a regime is flown inadequately from the algorithm standpoint,
it is important to consider the possibility of replacing a leg with a slightly different one, for
example the angle of a line could appear to be different from the reference one, especially
vertical lines could be seen diagonal because of the offset between actual criterion (based
on flight path) and the one used here (based on pitch angle).

Each error has a cost in terms of proximity to the reference maneuvers, which are given

by table 5.

Error | Gravity Cost
Leg alteration | Variable d(Ap)
Leg addition | Moderate | 20 + d (Ap)
Leg suppression | Important | 30 + d (Ap)
Leg replacement | Important 30

Table 5: Errors considered and associated distance

A function of the error in parameter change is considered in most of these distance

definitions since suppressing a 45° loop should not have the same impact on recognition as
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suppressing a 180° loop. Simularly, when adding a line in the middle of a loop, a 50ft line should
not have the same impact as a 400ft one. This function is described by equation 2, plotted in
figure 2. and responds 1o the following criteria:

o d{Ap) =~ 0 when Ap < 10

o d(Ap) = 20 when Ap = 20 (corresponds to a small error)

e d{Ap) ~ 2Ap when Ap > 30

- Apyt
d(Ap)=2 <1 — e~ In@x(5) > % Ap (2)
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Parameter change tifference

Figure 2: Cost of errors 1n parameter change

4.4 Distance Measurement

To determine which reference maneuver is the closest to the one that was flown, one needs the
distance between the flown mancuver and each of the reference. The distance between two
maneuvers is determined from errors, to go from the flown maneuver to the reference we are
comparing it to. The sum of the cost of each error (defined in table 5) to go from the reference
maneuver to the flown one gives a distance that is used to determine whether the maneuver can

be matched to the reference.
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maneuvers with
1 error from
flown maneuver

Figure 3: Accounting for errors when identifying maneuver

Determination of the errors path to go from a maneuver to another has no direct method,
and only browsing all possible paths starting at the reference manecuver to check when the flown
maneuver 18 attained has becn found possible. This gives particularly good results if the paths
starting at each reference maneuver are kept in memory between two runs of the recognition
algorithm, in some sort of a map. since the mapping is a very time-consuming process, especially
when mapping around hundreds of reference maneuvers. However for memory reasons the
length of explored paths has to be limited to a small value, as the size of the map increases
exponentially with the length of explored paths.

This yields a problem in terms of number of errors that can be considered. A good
solution to allow slightly longer paths, which has been adopted in this study, is to generate small
maps around each reference maneuver once and for all. which can take some time but reasonable
memory, then, when processing a maneuver, map the region around the maneuver to identify,
which takes little time (there is only one region to map), and check for common points between
this region and each initial map. This method is schematically represented in figure 3, and can

be summarized as follows:

Memorize maps around each reference maneuvers,
Generate a map around the flown maneuver.

Look for common points, and sum the distances to get flown-to-reference distance.

17



4.5 Identification

After comparison of the flown maneuver with each of the reference maneuvers, a decision as to
which one is the best match has to be done. For this study. the choice algorithm is very simple:
the reference that shows shortest distance with the flown maneuver is selected. Other criteria are
of course possible, especially if there is a prior knowledge of the flight program, as it would be
the case when judging aerobatics, and this would probably lead to a different distance definitions,
with more detailed error scale, and a precise cost for each error that would match International
Aerobatics Club's (IAC) judging criteria.

Another possible method, if there is only a partial knowledge of the flown programis
to weigh the reference maneuvers with the probability of this maneuver being in the program.
For instance, Half Cubans are very common in demonstration aerobatics and would be weighed
more than Goldfishes, which are more rarely seen. For example a badly-flown Half Cuban which
looks like the one in figure 4 could be considered a badly-flown Reverse Goldfish (the maneuver
obtained by flying a goldfish’s legs backwards, represented in figure 4), the Half Cuban could

still be recognized over the Goldfish with this weighing process.

~ RO
JQ\M/;«

Figure 4: Identification example: badly flown cuban
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S TESTS AND RESULTS

The developed algorithm was tested as a post processing algorithm on two test sequences that
were flown on X-Plane Flight Simulator for data acquisition. The regime recognition algorithm,

being composed of filters, can be used for real time regime recognition.

5.1 Data Acquisition

The two flight tests were flown by Dr. Anderson and Mikhael Ponso on X-Plane Flight Simulator,
and the data acquisition was performed using a Simulink model that reads data packets from X-
Plane in real time. This model was developed by Embry-Riddle Aeronautical University’s Fligh.t
Research Center for research on Helicopter Health and Usage Monitoring Systems, and used for

similar purposes in this research program. It is described in appendix A.

5.2 Data Treatment

The Flight Regime Recognition algorithm was implemented using Simulink to enable real time
identification and is described by appendix B. The Maneuver Identification algorithm was imple-
mented in Matlab, treating data output by the Simulink model. The whole process is summarized

in figure 5.

5.3 First Sequence

The first test sequence, represented in aresti notation in figure 6, was designed for testing and
tuning of both algorithm, and includes a long leg of most regimes, as well as simple maneuvers
that allow simple recognition. It consists in the following maneuvers: Climb, Vertical descent,
Half cuban eight, Full loop (360°), 180° turn, Full roll (360°) in level flight. It was flown twice
by Dr. Anderson at the beginning of the work on this study. Results for the second run of this
flight are shown in great details here, they are very similar to those obtained with the first set of

data.
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Figure 6: First test sequence in Aresti notation
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Tuning of the tolerances as well as the recognition algorithm was mostly done on this se-
quence, for both runs, even though , and the results in terms of states and regimes are conclusive

for both regime recognition and maneuver identification.

5.3.1 States Observed

First step of the process is the determination of states throughout the flight, and results are given
in figures 24 through 29 in appendix C. Under this form, they do not give much information, but
they allow detection of problems on states determination as well as problems that could occur
later, in regimes recognition and legs detection.

The states are the result of tuning the model’s tolerances on each parameter and deter-
mination of these tolerances is a process that requires prior knowledge of the flight: by knowing
what leg was flown at a given time, we know which states should be present, and therefore
we can tune the tolerance so the proper states are active. Of course the tolerances are constant
throughout the flight so this tuning process is done only once, and then checked for the whole
flight. Automatic tuning could be possible provided a given sequence of legs that the pilot would
fly prior to the actual program to adapt the tolerances to his aircraft and his way of flying. The
Flight Regimes were computed throughout the flight using the transition matrix and are shown
in figures 7 to 12. They seem to match the intended regimes for most of the flight, and transitions

between regimes appear to be measured properly.
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5.3.2 Maneuvers’ Description

The regimes evolutions are of great importance, and will determine how the maneuvers can be
recognized. In figures 7 to 12, the maneuvers have already been decomposed into legs, which

are used for readability of the figures, and given in table 6.

Length | Regime Flags
62° loop
433 ft | climb
44° loop (inverted)
211 ft | level flight
87° loop inverted
292 ft | vertical descent | inverted
93¢ loop
2148 ft | level flight
222° loop
462 ft | descent half roll from inverted
45° loop
800 ft | level flight
349° loop
425 ft | level flight
321° turn
595 ft | level flight
level flight half roll to inverted

Table 6: Sequence of legs detected for the first sequence

This long sequence of legs has been decomposed into maneuvers using the 100 ft long
level flight criteria, parsed through the maneuver identification algorithm and the results are

detailed in the next pages.
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Climb:

Aresti number  1.3.1

1
Aresti notation

Description from flight data  62° in a loop
433 ft climb
44° in a loop (inverted)
Identified as  1.3.1, at distance 20

157

Level
Turm

Chimb
Descent

\ V-chmb

e Y-S CENT

1 -~ Loop
Tailshde

f
]
, Climb Level Inverted
! '
{ i
{ i

05" % “ |
\ //\i [

Figure 7: Regimes during climb

This maneuver demonstrates the capability of recognizing the Climb regime and short
Loop legs. The maneuver 1dentification algorithm has no problem identifying 1t as the sequence

of legs respects the catalog’s description of the maneuver.
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Dive:

Aresti number 1.6.3
- S—
2
H
H
f
i
Aresti notation |
Description from flight data  87° in a loop (inverted)
292 ft vertical descent

Identified as

93° in a loop
1.6.1, at distance 0

15 P 1 !
i H | I 1
| R \ X Levsl
i i ] } H '}'u{n
i i i i i
1 - - - i i i
1 Ly - ,l% ! Climb
| f 3‘ S { Descent
. I ]
1 i ; I ! V-chmb
057 : 5}3'“’ ’ : ——— Y-gEsCRNT
{ {
; ~ f' | »§ 3 | Loop
i ! L {
] j \ g /\ [\)\{; R Tailslide
ort L T 1 RolHl
{ b i [
; Loop \  Loop : inverted
Level V-Destent | Level |
_0 57 i i 1 | i i H } i

Figure 8: Regimes during vertical descent

This maneuver shows the capability of recognition of the Vertical descent regime as well
as measurement of the length of Loop legs. Once again, the maneuver identification program

gives good results as the legs sequence match what they are supposed to.
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Half Cuban:

Aresti number

Aresti notation
Description from flight data

Identified as

8.42.1

222° in a loop

462 ft descent with half roll from inverted
45° in a loop

§.42.1, at distance O

151 ]
: Level
: Turn
o : - Chimb
| Descent
f Y-climb
0571 ’ Y-descent
} : Loop
X “k ﬂ /\ Tailslide
0 ! Roll
Level | Inverted
f Loop
0.5 L ‘
35 40

Figure 9: Regimes during half cuban

The half cuban was mostly used to check the behavior of the legs detection algorithm in

presence of a roll, which is not a regime by itself, but adds on to a given regime. In this case,

the performance was very good and the detected maneuver matched the description of a cuban,

resulting in a good identification.
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Loop:

Aresti number 7.5.1

Aresti notation
Description from flight data  349° in a loop
Identified as  7.5.1. at distance }

1.57 1 o
: Lo Level
: : Tum
1 8 : ((r-—-r“""Tl : * Slﬁmh
- / | i Descent
3 { E H
i § i V-chimb
05} { | i e o= V-descent
] # i
Lo i/w E \g \ - Loop
i ‘ ] ! " \§ o Taishde
i N iy Ll N _——
0 j Roll
¢ { {
| Loop t Ihverted
Level Level
-0 5 1 4 it i
55 60 65 70

Figure 10: Regimes during loop

Another very simple maneuver, which demonstrates capability of identification of a long

loop leg, and acceptance of slight errors in length for identification.
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Turn:

Aresti notation
Description from flight data  321° in a tumn
Identified as  2.1.1, at distance 77 (360° turn instead of
180%)

1
i
i
{
{
i
n
H |

! i

| )\}I
f\ﬁ Ay
A AL
i

: Level
Turn :
_05 § i i |}
75 80 85 g0

Aresti number

Figure 11: Regimes during turn
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Tum

Climb
Descent
WV-climb
V-descent
e LOOP
Tailshde
Roll
Inverted

This maneuver suffers from a flight error, and the identification algorithm performed

very well in detecting this error, showing the maneuver flown doesn’t match the one that was

intended, since the heading change is too important, and this shows as well in the raw flight data,

The prolongation of the Turn leg when no new regime is dominant is normal and this maneuver

shows in a very good way the behavior of algorithm when no regime 1s really dominant. This

may be a problem in terms of Flight Regime Recognition, but as far as leg recognition, it is the

easiest way to do it: the algorithm should be able to describe all legs.
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Roll:

Arestt number

Aresti notation

Description from flight data 595 ft level flight with half roll to inverted

Identified as

1.1.1

0——!)——-]

1.2.1, at distance 0

Level

Turn

Chmb
Descent
Y-climb
V-descent
e LOO
Tallshde
Roll
Invered

15
|
{ \ 1 N :
5 ‘; ! 1% {
0.5 A Y \
AV
T \
X N L \
0 ¢ i i S
Level
‘0'5 A i t i ! 1 i IO S

96 87 98 99 100

Figure 12: Regimes during roll

This maneuver was flown too close to the ground and it shows a little error in flight

since the flight simulator had trouble when the wings touched the ground, and started to send

erroneous data. The level flight with roll is however correctly identified except for the length of

the roll, which really 1s 270° instead of 360°.
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5.4 Second Sequence

Once the algorithms were set for the first sequence, which consisted essentially of simple maneu-
vers, a second sequence was necessary to test them and see how they behave on more complex
maneuvers. The Flight Regime Recognition algorithm seemed to already have good results but
several cases still needed testing for the maneuver identification program, including roll on en-
ter, exit or top of a loop, inverted exit and entry in a maneuver, level flight in the middle of a
maneuver, and so on.

A second flight sequence was then designed to address many of those cases and check
whether the algorithm still gave good results. This sequence, depicted in figure 13, was flown'by
Mikhael Ponso. The FRR algorithm performed very well on this second sequence, provided that
the tolerances were reviewed to accommodate M. Ponso’s flying. The maneuver recognition, on
the other hand. required modifications to take specific configurations into account, in particular
the rolls-loops combinations. This has been performed by changing details in the way legs are
detected. Another problem appears in maneuver separation: maneuvers that use level flight as
one of their legs are separated into several maneuvers. The length of level flight used to separate
maneuvers seems to be too short, but it was also seen that a longer distance would not enable

successful separation of maneuvers for the first sequence.

H
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!' L 4 &-_»
¥
H 3
1y

Figure 13: Second test sequence in Aresti notation
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Vertical S:

Aresti number 7.11.1

|
“\\
Aresti notation  #——"
Description from flight data  181° in a loop
76 fr in level flight (inverted)
76 ft in level flight (inverted)
185° in a loop (inverted)
Identified as  7.1.1 + 7.1.2 (seen as two maneuvers)

Level
Turn
Climb
Descent
W-climb
e o Wd@goant
< LooOp
Taislide
Roll
inverted

|
{
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t
!
!
|
!
|
!
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|
|
{
|

{

H

| {
, Level
{ H
{ {
| )

LTV’eI Lé’glbl Loop
_05 { ! i H i

10 15 20 25

Figure 14: Regimes during vertical §

This maneuver combines errors from flight and treatment, as it should not have a long
level flight leg in the middle, which can be seen in the raw flight data, thus results from the way it
was flown. This level flight is detected by the legs detection process, and mistakenly considered

as a maneuver separation by the maneuver identification algorithm.
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Square loop:

Aresti number  7.8.1

Aresti notation Lem 1
Description from flight data  153° in a loop
81 ft in level flight (inverted)
333 ftin level flight with half roll from
nverted
76° in a loop (inverted)
92 ft vertical descent (inverted)
87° in a loop (inverted)
342 ft in level flight (inverted)
Identified as  7.1.1 + 1.1.4 + 1.7.3 (seen as three
manecuvers, one of which 1s badly flown)

157 ! b
| o Lovel
: | : Tum
1 ; -“—: Climb
TR Descent
| : V-chimb
0.5 } V-descent
i : h{ Loop
{ : : Talslde
0 r 1 Roli
| LUOQ:; Loop | | Inverted
Level : Levé
-0.5 — -
30

Figure 15: Regimes during square loop

This maneuver has a small error from flight, with no vertical line marked on the first
leg, resulting in a 180° loop seen instead of a 90° loop followed by a vertical climb an another
90° loop. But it mostly has a problem in the separation of maneuvers, which creates three

maneuvers out of a single one because of the level flight leg.
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Bow-tie:

Aresti number 1.33.2

H
3

Aresti notation  #-~-~
Description from flight data 342 ft in level flight (inverted)
34° in a loop (inverted)
7035 ft climb with half roll from inverted
103® in a loop {inverted)
362 ft vertical descent (inverted) with half
roll
122° in a loop
359 ft climb
38° in a loop (inverted)
Identified as  1.33.2, at distance 68

Level
Tum

Climhb
Descent
V-climb
Y-descent
Loop
Tailslide
Roli
Inverted

Figure 16: Regimes during bow-tie

This maneuver was mostly designed for demonstration of inverted leg between maneu-
vers, and this is correctly detected. The bow-tie is an example of a long maneuver, in terms of
number of legs, and this allowed testing the mapping algorithm’s computation time on a long

maneuver, which gave good results even though the process is time consuming.
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Reverse Half Cuban:

Aresti number

Aresti notation
Description from flight data

Identified as

Tt L e o e

e R

8.47.3

7

188° in a loop

372 ft climb

31° in a loop (inverted)
8.47.3. at distance 108

Level
Turn
Climh
Descent

V-descent

o LoOp
Taitslide

Roli
inverted

1
!

!

!

!

|

|

!

\
\F V-climb
I

s

J,

|

!

!

Figure 17: Regimes during reverse half cuban

This maneuver was included in the flight sequence for testing of the algorithm when

confronted to a half roll at the beginning of a loop, and the results were initially not good, and

showed that a change in the algorithm was necessary. After changing the way the algorithm

treated roll legs between two regimes (as there is no active regime during this roll). the identifi-

cation gave good results.
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Avalanche (Loop with Roll on top):

Aresti number 7.5.1

Aresti notation S'Q

Description from flight data  147° in a loop with roll
26 ft in level flight (inverted)
158° in a loop
Identified as  7.5.1, at distance 137

1.5 1 {
| " |
) y | Level
‘ i ! Turn
§ i {
ir : - - : Climb
! i Descent
[
' V-climb
0.51 SR 5 1- 1 o1 -1 41
| A : ‘ — Loop
&\ ; ] \\ . ﬁ Tailslide
0 e ; Roll
{
Level Level Invered
i {
t f
_.0 5 H i i
115

Figure 18: Regimes during avalanche (loop with roll on top)

This is another example of maneuver that combines rolls with loops, and the algorithm
had trouble identifying it before the fix mentioned for the previous maneuver was performed.
The level flight leg is present in the flight data and not a result of an error in the flight regimes
recognition algorithm. The maneuver recognition algorithm identified this maneuver properly

even though the legs detected show an error from what woud be expected for this maneuver,
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Immelmann:

Aresti number 7.2.1

Aresti notation D

Description from flight data  150° in a loop with half roll
Identified as  7.2.1, at distance 56

Level
Turn
Climb
Descent
YV-climb
Y-descent
Loop
Tailslide
Roll
Inveriad

140

Figure 19: Regimes during Immelmann

This maneuver is the third example of loops and rolls combination, but this time the fix
did not appear to be necessary as the roll happens at the end of the loop. However, before the fix,
a Split S, which is the maneuver obtained by rolling to 180° of bank before entering a 180° loop
would probably have been identified as an Immelmann.

The most important problem to this time, which was seen on the first two maneuvers of
this sequence, is the separation of maneuvers, which is considered once and for all, and possible
errors in maneuver separation is not taken into account by the maneuver identification algorithm.

No solution that would not be prohibitively time consuming has been found in this study.
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6 CONCLUSION

This study used a filter approach to develop a Flight Regime Recognition algorithm, which was
proven to give good results and address the problem of real time FRR, since it processes the
data straight from flight recorder in a continuous, time step by time step, way. In addition, the
maneuvers flown implied complex regimes and transitions to which the flight regime recognition
program responded with a good behavior.

Spins and snap rolls were not considered in this study in order to focus on feasibility
rather than completeness. The tailslide regime was considered but not tested since all tests
conducted were flown in a simulator, which brings uncertainties in terms of its behavior ih a
stall and a tailslide. Implementing and testing of these regimes would be necessary for future
development and large scale use of this system.

No specific interface was developed for real time treatment but all it would need is
the Simulink model to be implemented in the data acquisition solution. In the case of this
study, it would be achieved by combining the data acquisition and the flight regime recognition
models, instead of using a recording of output data from the first to feed the second one for
post-processing.

This Flight Regime Recognition system shows very good results for a moderate cost,
since it only requires the installation of an Inertial Measurement Unit and recording of its data.
However, its approach was specifically adapted for aerobatic maneuvers and some additional
data may be required for flight load analysis.

The legs identification also provided good results on both sequences and the most im-
portant source of problems is separation of the whole flight into maneuvers, which prevented
correct identification in the case of level flight used as a leg of a maneuver. A priori knowledge
of the sequence flown could allow better separation of the flight into maneuvers and enhance the
identification of errors, which most obvious application is aerobatics rating.

The tailslides, hammerheads, rolling turns and stall turns were left out of the catalog

because they were not part of the test sequences, for simplicity and because the combination
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of roll and turn regimes was not very well modeled. Also, due to the way rolls are modeled
superimposed on a regime for leg identification, hesitation rolls and rolling turns are not modeled
properly and further development of the model should be done to allow consideration of these
scenarios.

Aerobatic maneuvers are of a complex nature and capability of both regimes recognition
and maneuver identification has been achieved in this study, with very good results for the first
one, which would need to be completed by the addition of spins and snap rolls, and promising
results in the second, which would need further development and testing to achieve completeness

and robustness.
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APPENDIX

A Data Acquisition Model

The data acquisition model that was used in this study uses a custom block to read data packets
sent in real time by X-Plane Flight Simulator, version 8.40. X-Plane was setup to send UDP

packets to the receiving computer containing the following information:

Data index Name
01 Elapsed Time
02 Speed, Vertical Speed
03 Mach, G-load
05 Atmosphere: Ambiant
07 Joystick: Ai/Elv/Rud
14 Angular Accelerations
15 Angular Velocities
16 Pitch, Roll, Heading
18 Lat, Lon, Alt
19 Loc, distance Traveled
23 Throttle Setting
33 Engine Torque
35 Prop RPM
40 MP
62 Landing Gear Vertical Force

Table 7: X Plane data export settings

The Simulink model reads data packets in real time and creates a vector of flight data,

which is exported to Matlab workspace for post processing.
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B Flight Regime Recognition Model

The Flight Regime Recognition being mostly composed of filters was modeled in Simulink to
enable real time regime recognition, even though the current model uses recorded data. The
Simulink model. depicted in figure 21. recreates flight data and uses filters to create the states

vector, and multiplies it by the transition matrix /T to get the vector of flight regimes.

e} states

ST » .

Clock

simout
Statez

regunes

To Regimes simout
Regimes

brank

To States

Ly simntimie

simaout
time

Figure 21: Flight Regime Recognition model - top level

The central block consists of filters applied to each parameter. as shown in figure 22,
cach filter being the implementation of equation 1, depicted in figure 23, for “close to” states. its
complement to | for “far from” states. and specific equations for states (TAS < 0) and (N, < 0).

The “To regimes” block multiplies the states vector with the transition matrix H with upper and

Tower bounds set to 0 and 1 on probability of being 1n given regime,
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C States Observed During First Sequence
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Figure 25: Pitch angle and associated states throughout sequence 1
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D Source Code

The Flight Regime Recognition algorithm imitialization as well as the Maneuvers Identification

algonithm were implemented using Matlab, and the source code 1s given below.

D.1 Main Program (Import script)

The main program sets the tolerances and input data 1nto the Simulink FRR model before runming
it, and then runs the maneuver identification algorithm on the model's output. It also generates

graphs and outputs the maneuvers description in Matlab prompt.

foo Greperal Thight Jdata antvrpratatron progoam preamnie

cle

clear all |

close all |

warmng( Toff . tall™y |

Tl fapais

Yoo bale centaaning the thight duta Can b owrther g ooy il or a0 omat hle
with

¢ varrable OSNVv oDate Make ossvhiles tor conssderation of the  mar fale

esyfile="run? osv’

load ponsol

¢

o Uaed tor nameag outpul graphs
sequence=l

‘oo Pitot tulis what toleranugs too e tLurient optioas Yndeson
v Popso and anythinp olse tor detault toumimaly releraneeo
pilot="Anderson’

catatogfile="catalog™ . '« DHile vontamimg vatalox an plavn test Ginputn
prefoaded=1 , ‘v tcllv wether the «atadoep mat tile contamms up o date catalog
Conet to B oto force teadrne trom the cataley baile

recognition=0 Toomanvlsad recogmihien from cetatog sedote 8t owhat o
fe amterenting s onby the manewsers desctiption net iy catatoy relerence
¢ The rerosmition process being tony bime consuiing ~ettiae thie to 8owall
coave a4 fot o of Lme 1t vown don boncod thoe mancuvens roforonee

¢

T Moddd paramators
Yo frarns tor comparators Inelyftolerance 4o 2nve 08 when wathin telerance
KNz=log (2370 574 . "« tolerance ot 0% 3 oen Nemvalue

Ki=log{(2)/1074 | G lotorance of 1 dvg on thuta -+ 48

Ki2=log(2)/2074 . footeturance of 20 ke wn thutamer WG

Kp=log (2174074 . Yoo tol

if (stremp(pilot ., "Anderson’))

¥

crance ol 40 dees oo un po—h
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file:///nderson
file:///fode

Kg=log(2)/8°4 Y tolerance of & deg/ser on g =0

Kr=log(2)/5°4 e tolerance of § deg/aece on v =0
elseif (stremp (pilot 'Ponso’))

Kg=leg(2)/5°4 |, % tolerance of 5 deg/ser on g =0

Kr=log(2)/1074 |, @ tolerance ol 10 degfsee on v =0
else

Kg=log(2)/5°4 | “ tolerance of 8 degf/sec on g =0

Kr=log(2)/5"4 |, % tolerance ol % deg/aec on  17=0
end
Kb=log (2)/15°4 % tolerance of 15 deg on  phi=+/~180 or O

% Transition matris

% Nz=l NzT=0 Neel 445 490 45 90 U<0 po0 g0 10 bank

H=[ 1 0 0 -1 -1 -1 -1 -1 =7 -7 -5 0 % Level
0 0 0 -1 -1 -1 -1 -1 ~I 0 I -1 % Turn
0 0 0 1 0 0 0 0 ¢ -7 0 0 % Chmb
0 0 0 0 0 i 0 0 0 -7 0 0 % Descent
0 ~4 0 0 1 0 0 0 0 -7 ¢ 0 % V—chimb
g -4 0 0 0 0 1 0 0 -7 0 0 % v descent
0 0 0 g 0 0 0 -1 -7 1 -5 0 % Loop
0 0 0 ¢ g 0 0 1 a 0 0 0 % Tarlslide
0 0 0 6 o 0 0 o 1 & 0 0 4% Rolling
0 0 1 0 0 0 0 4 0 0 g 0 ‘e Imverted
1.

Y% maintmum value 1o ceonsider 4 state active
min.activity = 05

% tutott freguency for rigime change
cutoff = [Sxones(1,8) 10 10}

%t Catalog and Flight Dawa

if(recognition==1)

% load tatalog

[catalog ., extendedcatalogl=loadcatalog{catalogfile, preloaded) ,
eise

extendedcatalog={] ,
end

% toad flight data

if (Tisempty{csvfiile})
data=csvread{csviile) ,

else
data=CSV._ Data .

end

duration=data(length{data { .1}}.1}) ,

% Lxtract interesting data from thight record

% The wndices are vabid tor Xeplane simulator with data agquisition model
% from {light resecarch conter (HWIL simulator)

time=data{ .1}

Nz=data{ .22) .

alt=data{ .12} ,

theta=data( ,13) .
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bank=data (: . 14) ;
head=data (: ,15) .
TAS=data (:,2)

1

p=data(:,26)
g=data{;,25) :
r=data{:.27)

ratmof-turn:r(*cos(bank*piiiso)m‘*sin(bank*pill&(}) ;

@e Data procvessing

fprintf{ Processing.data\n’)

tie

sim( 'processing ')

[legs . legstimel=getflightlegs (active.regime ., active.roll, active.inv , TAS, p,
q, rate.of_turn . alt, simtime) ;

[flight . flighttime ]=getmaneuvers(legs . legstime , extendedcatalog , recognition
)

toc

9% Qutput

n.fig=1

% graphs

plottegimes ;

plotmaneuvers ;

savefigures

close all ;

printmancuvers{ flight)

D.2 Catalog Parsing (loadcatalog function)

This function parses a catalog file containing a list of reference maneuvers specifically formated
and generates variants of the maneuvers described. For example, following Aresti catalog’s
numbering, the catalog file only requires family X.X.1 maneuvers, and the function generates
XX2 XX3 and X.X4 from the first maneuver. In most cases, when the catalog has not
changed since previous execution, the parsing is not necessary, and the catalog can be loaded

from a mat file.

function [catalog ., extendedcatalogl=loadcatalog (filename .preloaded)
% loads the catalop data an file fulename (or omat file 1f preloaded)
% and generates variants of given manguvers

if (preloaded)

load catalog
else
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catalog.file=fopen(filename, “rt’) ;
i=0
while (" feof{catalog.file))
i=isl
catalogdata{i.l}=fgetl(catalog.file)
end
felose (catalog.file)

% <hip the comments and empty lines
i=1
skipped="false
while (" skipped)
if (stremp(catalogdata{i}. "))

i=i+l
elseif{catalogdata {i }{1)=="%")
IESE S U
else
skipped=true ;
end
end
% Isolate each maneuver and 1w parameters
3=0 .

p.maneuvers=0
while (i<length (catalogdata (:,1}))
Y% read regime seguence
text=catalogdata{i} ;
i=1
k=0 .
maneuver={} ;
while (j<=length (text))
Y skip whitespaces
while (text (j)=="."
1=i+1
end
% read regime
regime=0 :
read=false
while (j<=length (text) &% “read)

if{text(j)™=".")
regime=regimex10+text (j) 48 ;
else
read=true ;
end
j:j+1
end
k=k+1

maneuver{k)=regime ;
end
% Same mancuver down
maneuver.down=maneuver ;
for k=l:length (manecuver.down})
switch (maneuver_down(k))
case 3
maneuver_down{k)=4 ;
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case 4
maneuver_down (k)=3

case 3
maneuver.down{k)=6 ;
case 6
maneuver_down(k)=5 ;
end
end
% read paramchange seguence
=i+l 3
text=catalogdata{i} ;
=l
k=0 ;

paramchange=zeros {1 . length (maneuver)) ;
while (j<=length { text))
% skip whitespaces
while (text(j)=="_"
j=j+l
end
% read change
change=0 ;
recad=false ;
while (j<=length (text) && “read)
i (text(j)™=".")
change=changex10+text(j)—48 ;
else
read=true
end
j=j+1
end
k=k+1 ;
paramchange (k)=change
end
% read roll elements sequence
i=1+1
text=catalogdata{1} :
j=1
k=0 ;
rolls=zeros(l, length(maneuver}) ,
while (j<=length { text))
% ship whitespaces
while (text{j)=="0_"}
j=i*l
end
% read roll
roll=0 ;
read=false ;
while (j<=length (text) &% “read)
if(text(3)™=".,")
roll=rollx10+text(j)—48 ;
else
read=true ;
end
J=j+1
end
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k=k+1
rolls {(k)=roll
end
i=i+1
‘e ship the comments and emply lines
skipped=false
while (" skipped)
if (stremp (catalogdata{i}, "))
=i+l
elseif (catalogdata{i}(1)=="%")
i=i+]
else
skipped=true ;
end
end
oread inverted variants
while ("stremp (catalogdata{t}, "))
name=catalogdata{i} :
1=i+1
text=catalogdata{i} ;
J=1
k=0
variant=zeros (1, length{maneuver)) ;
while (j <=length ( text))
% skip whitespaces
while (text(j)==".")
J=j+1
end
% read roll
inverted=0 ;
sign=1
read=false
while (j<=length (text) && “read)
if(text(j)™=".")
if(text(j)™="-")

inverted=1nverted*10+text(j)—48 ;

else
sign=—1
end
else
read=true
end
j=i+l
end
k=k+1 ;
variant(k)=inverted+sign
end
n.planeuvers=n.omaneuvers+l
catalog{n_maneuvers . 1}=name ;
catalog{n.maneuvers, 2}=maneuver ;
catalog{n.mancnvers, 3}=paramchange
catalog{n.mancuvers, 4}=rolls ;
catalog{n.maneuvers, S}=variant
% Same mancuver inverted
inv_variant=variant
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for k=1-length(inv_variant)
switch{inv.variant(k)}
case 0
invovartant (k=1 ;
case 1
tnv_variant{k)=0 ;
case 2
inv.ovariant(k)=3
case 3
inv_variant{k)=2 ;
end
end
% Chunge last digit of name
name (end )=name{(end)+1 ;
f.maneuvers=n.maneuvers+l
catalog{n.maneuvers , l}=name :;
catalog{n.maneuvers, 2}=maneyver ;
catalog{n.maneuvers . 3}=paramchange :
catalog {n.maneuvers, 4}=rolls ;
cataleg {n_maneuvers, S}=inv.variant ;
if ("stremp(name(1:3),°1.1°) && “stremp(name(i),.'2°))
% Same maneuver Jdown
downvariant=variant ;
for k=1:length (maneuver.down)
if (maneuver.down (k}==7)
if(downvariant{k)==1)
downvariant (k)=0 ;
elseif (downvariant (k) ==0)
downvariant{k)=l :
end
end
end
% Change last dygit of name
name { end ) =name (end ) +1
n.maneuvers=n_maneuvers+1l
catalog {n.maneuvers ., l}=name ;
catalog {n_maneuvers . 2}=maneuver_.down ;
catalog{n.maneuvers, 3}=paramchange .
catalog {n.maneuvers, 4}=rolls ;
catalog{n_mancuvers . S}=downvariant :
% Same maneuver nverted
inv_downvariant=dewnvariant ;
for k=1:length(inv.downvariant)
switch{(inv_downvariant{k})
case 0
inv.dewnvariant{(k)=1 ;
case 1
inv_downavariant{(k)=0 ;
case 2
inv.downvariant{k)}=3 ;
case 3
inv._.downvariant{kj)=2 .
end
end
% Change last digit of name
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name {end )=name{end )+1 ;
n.manegvers=n.maneuvers+l |
catalog {n.manecuvers, l}=name ;
catalog{n.maneuvers, 2}=maneuaver.down ,
catalog {n.maneuvers, 3}=paramchange :
catalog {n.maneuvers, 4}=rolls ;
catalog{n_maneuvers, S}=1nv.downvariant ;
end
i=1+1
end
% ship the commenis and empty lines
skipped=~false ;
while (" skipped && i<lemgth{catalogdata))
if (stremp(catalogdata{i}. "))
=141
elseif (catalogdata{1}(1)i=="%")
1=i+1 3
else
skipped=true ;
end
end
end

% create alterations of catalog maneuvers

for j=1:length(catalog{(:.1}))
extendedcatalog{y.l}=catalog{j.1} :
extendedcatalog{y.2}=altermanecuver{catalog(y,2:5) .1, ¢")

end

end

D.3 Flight Decomposition into Legs (getflightlegs function)

This is the first step of the maneuver recognition, and uses IMU data as well as regimes evolution

from the Simulink FRR model.

funection [legs, legstimel=getflightlegs (active_regime , active_roll .
active.inv , TAS, p. g, r. alt, simtime)
% Transformy regimes history into a seguence of flight legs

% rnrtralisation

maneuver=[] ;

paramchange={] ;

bankchange={] ;

inverted =[] :

starttime =[] ;

newregime=1 : % suppose the recordrag starts strarght and level
i=0 1

% enter loop

for t=l:size(simtime)—1
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regime=newregime ;
knowregime=0

% get dominant regime

if (active.regime (t) >0
newregime=active.regime(t) ;
knowregime=1 ;

end

% cane of a roll

if(active_roll(t))
newregime=active_regime (t)+10 ;
knowregime=1

end

% get parameter change
change=0 ;
if (round (simtime (1) *30)>0 && knowregime)
switch (newregime}
case {1, 11}
U.avg=mean{TAS(round (simtime (t)*30) :round (simtime (t+1)
*30)))
change=U_avg+1.6878+(simtime{t+D~simtime (1)}
case {2, 12}
r.avg=mean{r{round (simtime (1) *30):round (simtime (t+1)%30})
) s
change=r.avg+{(simtime (t+1)~simtime{t)) ;
case {3, 4, 5, 6, 13, 14, 15, 16}
change=alt (round (simtime (t+1)%30))—alt {round (simtime (t)
*30))
case {7, 17}
g-avg=mean(q(round{simtime (t }*30) :round {simtime (t+1)}x30))
) .

change=q.avgx(simtime { t+1)—simtime(t))

*

end
% change n bank angle
p.avg=mean({p(round (simtime (1} *30) :round(simtime (t+1)%30}}} ;
bchange=p_avg ={simtime ( t+])~simtime (1))},

end

S 1 we entered a new regime
if (newregime =regime)
% get inverted status of previous regime
if(j>0
inverted (j )=round (mean( active.inv (starttime{(j}:t)))
end
j=i+l
% add current regime to the mancuver history
maneuver(j }=newregime ;
paramchange(j)=change
bankchange () }=bchange .
starttime (j )=t ;
elseif (knowregime==1)
if (j>0)
% udd purameter change
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paramchange(j)=paramchange(j)+change ;
bankchange {(j)=bankchange(j)+bchange
end
end
end

[legs{1.1}. legs{2,1}, legs{3.1}, legs{4,1}. legstime]=trim_maneuver
maneuver, paramchange, bankchange, inverted ., starttime) ;

D.4 Legs Filtering (trim_maneuver function)

This function removes legs that do not respect the minimum length to be considered non-

transient. and makes groups the roll legs with surrounding legs if they share the same dominant

regime, except for level flight (the level flight with roll is kept as a leg by itself).

function {tmaneuver tparamchange rolls tinverted tstarttime]=trim_maneuver(

maneuver, paramchange, bankchange . inverted . starttime)
% trims a maneuver 1o remove the transient regimes and treats the rolls

tmaneuver =[]
tparamchange =[] ;
rolls =}
tinverted ={]
tstarttime =[] :

if (length (maneuver j==1 && sum(bankchange) <90}
refurn
end
j-trim=0
for j=1:length{mancuver)
regime=maneuver(j)
while (regime >10)
regime=regime —10 ;
end
if(regime==10)
if(j_trim™=0 && tmaneuver(j.trim) =1}
regimes=tmaneuver(j.trim) ;
end
end
minparamchange={15, 35, 15, 15, 15. 15, 25, 10, 15, 151 ;
if ({abs{paramchange(j))>minparamchange{regime)) || abs{bankchange(j))
>45)
% take this regime into account
if(j.trim >0)

if (tmaneuver(j.trim)==regime && (regime =7 || inverted(j)==
inverted (j-trim) || paramchange())<minparamchange{regime)
3

% when regime does pot change . add paramchange to
previous
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o parumchange except tor loops that change directions
tparamchange (j.trim )=tparamchange (j.trim)+paramchange(j)

“ treat changes noamverted attitude
if(tinverted (y.trim)==0 && inverted {j)==1)
SO0 =2
tinverted (j_trim)=2

end

Hinnverted (j_trim)==1 && inverted (j)==0)
Sl Bl o= 3
tinverted (j.trim)=3

end

if(tinverted (j.trim)==3 && inverted (j)==1)
T 0 I = 1
tinverted (j trim )=l
end
if(tinverted (j-trim)==2 &% inverted (j)==0)
G 01Ul =0
tinverted (j.trim)=0 ;
end
bank=bank+bankchange (})
rolls (j-trim)=0 ;
else
¢ new regime
J-trim=j_trim+l
rolls{j.trim)=0 ;
tmaneuver(j.trim)=regime
tstarttime {j.trim)=starttime(j} ;
tparamchange (j_trim }=paramchange{(j)
tinverted {j. trim)=inverted{j} ;:
bank=bankchange(j) ;
end
else
¢ first regime secen that v taken nto account
jotrim=j_trim+l
rolls {(j-trim)=0 .
tmaneuver{ j.trim)=regime :
tstarttime {j.trim)=starttime{j) ;
tparamchange (j.trim )=paramchange(j) :
tinverted (j-trim)=1nverted(j) :
bank=bankchange(j)
end
if (abs(bank)>135)
%t anclude volling element
if (abs(bank) <270)
% half roll
if(rolls (j.trim)==l)
rolls {j-trim)=22 ;
else
rolls(j trim)=2
end
elseif (abs{bank} <540)
G fall roll
rolls(j.trim)=|
end
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end
end
end
tstarttime (j.trim+1)=starttime {end)
for j.trim=1:length (tmaneuver)
tparamchange (j.trim )=abs{tparamchange(j.trim)) ;

¥

end
end

D.5 Maneuvers Identification (getmaneuvers function)

This function performs the decomposition of the whole flight into maneuvers and, if asked to,

runs the distance measurement algorithm, on the fly with maneuver cutting.

function [maneuvers ,flighttimel=geimaneuvers(legs ., legstime ., extendedcatalog
namemaneuvers )

“% Decomposes legs into maneuvers with time delimitations

e ornrtralisation
n=1
i=1
for k=1:4
maneuvers{n.k}(i)=legs{k} (1)
end
flighttime{n,1}(i)=legstime (1} ;
i=i+l
% enter loop
for j=2:length(legs{i})
if(legs {1}(j)==1 && legs{2}(j)>100)
% use 1t for separation of maneuvers
it (maneuvers{n,1}(i-1)"=1)
% add the regime to current maneuver
for k=1:4
maneuvers{n,k}(il=legs{k}(j}
end
flighttime {n,1}(i)=legstime())

if (j<length(legs{1}})
% get to the muddle of the straight leg
maneuvers{n,2}(i)=maneuvers{n.2}(1)/2
flighttime{n,1}(i+1)=floor (legstime (j)+{legstime (j+1)~

legstime (j))/2)

else
flighttime{n,1}(1+h)=legstime (j+1) ;

end

eise

% add the paramchange to previous regime

if(j<length{legs{1}))
% only hall of 11
maneuvers{n,2} (i —D=maneuvers{n.2}(i—D+legs {2}(j)/2
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else

flighttime {n,1}(i)=floor(legstime (j)+({legstime{j+1)—

else

legstime (j))/2)

2

% total

maneuvers{n,2} (i ~1j=maneuvers{n.2}(i—1+legs {2}(j)

end

end
% proceed to namiag
if {namemaneuvers)

maneuvers{n,5}=—1*ones(length(extendedcatalog(:,1)),1)

end

o

[

flighttime {n.1}(1)=legstime (j+1} :

¥ find distance to catalog maneuvers
G =» create hist of alterations

of maneuver

alterations=altermaneuver{maneuvers{n,1:4), 1, {7}
¢ and compare them all to the catalog

mindistance=200
for cat=1:length(extendedcatalog (:.1))

for alter=1:length(alterations {(:,1)})
for alt_cat=1:length(extendedcatalog{cat ,2}(:,1))
distance=comparemancuvers{alterations {alter ,1:4) .
extendedcatalog{ecat 2} (alt.cat ,1:4)) ;
if(distance =—1}
distance=distance+alterations{alter .5}+
extendedcatalog {cat 2} { alt.cat 5}
if (maneuvers{n,5}(cat)=s=~1 || maneuvers{n,5}(
cati>distance)
maneuvers{n,5}(cat)=distance
end
end
end
end

if {maneuvers{n.,5}(cat) "=—1 &% maneuvers{n.3}{cat)<
mindistance)

mindistance=maneuvers{n,3}{cat) ;

end
end

mancuvers{n.6}=extendedcatalog{cat, 1}

if (j<length(legs{1}))
G start the next mancuver

end

n=n+l
i=l
for k=1:4

maneuvers{n,k}(i)=tegs{k}(j) ;

end

% get to the middle of the straight leg
maneuvers{n.2}(i)=maneuvers{n,2}(i)/2
flighttime {n.1}(i)=ceil (legstime () +(legstime (j+1)~legstime (j

Y3/2)
1=i+]

if(legs {1}i)"=10)

% sumply copy the leg in manecuvers
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for k=14
maneuvers{n.k}(1i=legs{k}(y) ;
end
flighttime {n.1}(i)=legstime () ;
i=141
else
% add the voll to the previous leg
maneuvers{n. 3} (i~D=legs {3}(j) :
if (legs {3}(j)==2 || legs{3}(y)==24)
if (manecuvers{n.4} (1 ~1)==0)
maneuvers{n.4}(i—1)=2 ;
else
maneuvers{n,4}(1—-1)=3 ;
end
end
end
% chech whether the end of the flight 1s attained
if(y==length(legs {1}))
flighttime {n,1}(i)=legstime (j+1}
end
end
end
end

D.6 Mapping (altermaneuver function)

This function maps the region around a given maneuver for distance measurement. It is used for
both reference maneuvers’ alteration (making mistakes from the reference) and flown maneu-

ver's alteration (canceling mistakes that could have been done).

function [alterations]=altermanecuver(maneuver. n.errors , maneuveriype)
% Generates altevations of a maneuver with n_errorsy or less
Returns array of alterations and corresponding distance
Process difters asv a function of maneuvertype.
— ¢’ mean~ we are alteming a reference manewser. and making errors
— “f" means we are altering a flown maneuver. and canceling errors

Q9 R R

if(n.errors >1)
% generate alterations at level n-l
alterations=altermaneuver (maneuver, n.errors —1, maneuvertype)
% and alter them all by | errorx
n_max=length (alterations (¢ .1}) ;
for n=2:n.max
% bhint of mew alterations
candidates=altermaneuver{alterations{n, 1:4), 1. maneuvertype)
for j=2:length(candidates(:,1})
¢ cheek wether tt 1s already n the table of alterations
found=false ;
k=0
while (k<length(alterations {:,1)} && “found)
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k=k+1
distance=comparemaneuvers{alterations{(k.1:4), candidates
ja1.4))
found=(distance ==0) ;
end
if ("found)
% add candidate to the list of alterations
alterations{end+l, I}=candidates{i. 1} ;
alterations{end, 2}=candidates{j, 2} ;
alterations{end, 3}=candidates{j, 3} :
alterations {end, 4}=candidates{;. 4} ;
alterations{end, 5}=alterations{n,5}+candidates{;.5}
else
% replace distance with shortest one
alterations{k.5}=min(alterations{n.5}+candidates{y.,5}.
alterations{k.5}) :
end
end
end
elseif(n.errors==1)
% Generate List ot alterations
G Put the maneuver 1tself in the lList . at distance O
n.alt=l ;
alterations{n.alt ,1}=maneuver{1} ;
alterations{n.alt ,2}=maneuver{2} .
alterations{n_alt ,3}=maneuver{3} ;
alterations {n.alt 4}=maneuver{4} ;
alterations{n.alt ,5}=0 ;

% Suppress 4 regime
if (length (maneuver{1})>1)
% Distance definition
if (stremp (maneuvertype . “r’))
“% Regime not seen where 1t <hould have been
% level turn diagonal vertical loop
distance={ 30 40 30 30 30 30 20 1 =
else
% Additionnal regime was seen get rid of 1t
% Yevel turn dragonal svertical loop
distance=[ 20 40 20 20 20 20 20 1
end
S oanverted statuy treatment
inverted_problem=[0 2 2 0

[P - $81
— D
i PG e
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n.alt=n_alt+l ,

alterations {n.alt, l}=maneuver{i}{(2:end) ;
alterations{n.alt . 2}=maneuver {2}(2.end) ;
alteratrons{n.alt ., 3}=maneuver {3}(2 end) ;
alterations{n.alt . 4}=maneuver{4}(2 end)

suppressedregime=maneuver{1}(1);
paramchange=mancuver {2}(1)
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alterations{n.alt. S}=distance(suppressedregime)+2xparamchange
(1 exp({-log(2)x{paramchange/20)"4})

fer j=2:length(maneuver{1})~1

n.alt=n.alt+}

“ record mew regimes sgguence
regimes={mansuver{1}(1:;—1) maneuver{1}{j+1l-end)] :
paramchange={maneuver {2}(1:j ~1) maneuver{2}{j+l:end)] ;
rollis ={maneuver {3}(1:3~1) maneuver{3}(y+1l:end)] :
inverted =[maneuver {4}(1:y~1) maneuver{4}(j+lzend)] ;

% then group repeated regymes except for loops that change
% oanverted status
if (regimes(j~1)"=regimes(}) || (regimes(j)==7 && inverted ()
—1)"=1nverted{(j))}
alterattons{n.alt . 1}=regimes ;
alterations{n.alt, 2}=paramchange ;
alterations{n.alt, 3}=rolls ;
alterations{n.alt, 4}=1nverted :
else
% trim the repeated regume
if (jxlength{regimes))
alterations{n_alt, l}={regimes(l.j—1) regimes{j+1l:end
b I
alterations {n.alt, 2}=[paramchange(l:j—1) paramchange
(j+l:end)] |,
alterations{n.alt, 3}=[rolls{l:j—1) rolls(j+l:end)]
alterations{n.alt, 4}=[inverted (1:j~1) inverted(y+1:
end)] ;
else
alterations{n.alt, l}l=regimes{1:j~-1)
alterations{n.alt, 2}=paramchange(l.y-1} .
alterations{n.alt, 3}=rolls(1:j 1)
alterations{n_alt, 4}=1nverted (1:j—-1) :
end
% and adapt paramchange . rolls and nverted
alterations{n.alt . 2}(j —D=paramchange(j —1)+paramchange(}
) s
if (stremp{maneuvertype, 'r’))
alterations{n.alt . 3}(3—D=max{rolls{(j~-1:3))
else
if (rolls (j) =0)
if{rolls(j~1)"=0)
if(rolls(j—D==1 && rolls(j)==1)
alterations{n.alt, 3}(;)=21 ;
end
if((rolis(j~D==2 && rolls (j)==1) || (rolls{]
D=l && rolls (j)y==2))
alterations{n.alt, 3}(3)=32
end
if(rolls{j~1)==2 && rolls(})==2)
alterations{n.alt, 3}(ji=22 ;
end
if(rolls (j —1==22 && rolls (] )==22)
alterations {n.alt . 3}{j)=42 ;
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end
else

alterations{n.alt . 3}(y)=rolls(j) ;

end
end
end

if(inverted(j)=—1 && imverted (j—1)"=—1)
alterations{n_alt ,4}(j—1)=inverted.problem (inverted(j

-+l inverted (j)+1) ;
else
alterations{n.alt .4} (j—D=—1
end
end

suppressedregime=maneuver{1}(j):
paramchange=maneuver {2}(j) .,

alterations{n.alt . 5}=distance (suppressedregime )+2x
paramchange «{(1 —exp(—log (2)«(paramchange/20) "4))

end
n.alt=n_alt+l

alterations{n_alt ., I}=maneuver{i}(l:end-1)
alterations{n.alt, 2}=maneuver {2}(1 end—1)
alterations{n_alt, 3}=maneuver{3}(l:end~1)

»

¥

alterations {n_alt . 4}=maneuver{4}(l:end~1) :

suppressedregime=maneuver{1}(end);
paramchange=maneuver {2}{end) ;

alterations {n_alt . 5}=distance (suppressedregime )+2+paramchange

*(1—exp(—~log (2} +(paramchange/20)°4}) ;
end
% Add o regime
% that cuts another one
distance=—1xones{(8.8)
if (stremp{maneuvertype . '1'})
% Regime was not mantained constant while
% line cutting a loop
distance {1.7)=20
distance (3.6 ,7)=20x0nes{4,1}
Y% turn cutting a hine
distance (2 .1)=40 ;
distance (2 ,3:6)=40«0nes (1 .4) ;
% lvop cutting a bing
distance (7.1)=20
distance (7 ,3:6)=20x0nes(1.4)
% loop vutting & turn
distance (7.2)=40 :
else

1t should have been

% A regime was not seen in hotween two stmilar regrmes — add 1t
% tine not scen/flown between two parts of a leop

distance {1.7)=30 ;
distance (3:6.,7)=30xones(4.1)
end

% reconstruct angle between two hines (for cul
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angles={

for j=1:
for

fvi ¢l des  wv—¢  v-d  iav 1—¢ i
0. 0. 45, 315, 90, 270. 180, 0, 135, 225 % level
0. 0. 0, 0. 0. 0. 0. 0, 0, 0%
315, 0, 0, 270, 45, 225, 135, 0. 90, 180 % chimb
45, 0, 90. 0, 135, 315, 225, 0, 180, 270 % desc
270, 0. 315, 225, 0. 180, 90, 0, 45, 135 % v chimb
90, 0. 135, 45, 180, 0, 270, g, 225, 315 % v—dese
180, 0, 225, 135, 270, 990, 0. g, 315, 45 % inv
0, 0. 0, 0, 0, g, 0. 0. 0, 0%
225, 0, 270, 180, 315, 135, 45, g, 0. 90 % iav
135, 0., 180, 90, 225. 45. 315, 0, 270, 0 % v desc
1
length (maneuver{1})
addedregime=1:7
if (distance (addedregime ., maneuver{1}(j))>0

regimes=[maneuver {1}(1-j) addedregime maneuver{1}(j end)]

paramchange=[maneuver {2}(1:}) 5 maneuver{2}{j:end)] :

roll

s=[maneuver {3}(1:3) O maneuver{3}{j:end}}

inverted ={ maneuver {4}(1:j) -1 maneuver{4}(j:end)] ;
if (regimes () "=7)

else

% no need for paramchange adaptation
paramchange (] )=paramchange(3)/2 ;
paramchange ( j+2)=paramchange (j+2)/2 ;
% insert alteration

n.alt=n_alt+l ;

alterations{n.alt, l}=regimes
alterations{n.alt ., 2}=paramchange ;
alterations {n.alt, 3}=rolls
alterations{n_alt, 4}=inverted ;

alterations{n.alt, S}=distance (addedregime , regimes(j

Jy o

if (paramchange (j) >68)

% rewonstruet loop angles

{fromline , frominv]=findprevline (maneuver, j)

% get previous and mext regimes

if(j>n
previousregime=maneuver{1}(j~1) ;
previousinverted=maneuver {4}(j—1) ;

else
previousregime=fromline
previousinverted={fromny ,

end

if (j<length (maneuver{1}))
nextregime=maneuver {1} (3 +1) ;
nextinv=maneuver{4}(j+1)

else
nextregime=|
nextinv=0 :

end

% reconstruct angie

for inv=0:1
if (addedregime <5)
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inverted (j+1)=inyv
else
inverted (j+D)=—1 ;
end
if ((addedregime =previousregime || 1nverted (]
+1} =previcusinverted ) && (inverted(j+1)
“=—1 || inv==0) & (addedregime ™=
nextregime || inverted(j+1) =nextinv))
e not cutting a loop by the line i
started
% from {unless loop changed direction 1n
S the middley or exits to
% and ignoring anverled variant of
% vertical lines
if(fromline+6xfrominv >10)
frominv=0 ;
end N
deltaparamchange=angles {(fromline +6x
frominv , addedregime+6sinv)
if (tnverted (j))
% pushing instead of pulling
deltaparamchange=360—deltaparamchange

+

43

end

if (maneuver{2}(jY>deltaparamchange)

paramchange (j y=deltaparamchange

paramchange {j +2)=maneuver{2}(j )~
deltaparamchange

S ansert alteration

n.alt=n_alt+l

alterations {n_alt, l}=regimes .

alterations {n.alt, 2}=paramchange ;

alterations {n.alt, 3}=rolls ;

alterations{n.alt, 4}=1nverted

alterations{n.alt, S}=distance(
addedregime ., regimes{j)) ;

H

end
end
end
end
end
end
end
end

G Add a regime between two regimes
if (stremp (maneuvertype , 'r’})
for j=2:length (mancuver{l}-1)
¢ hine flown between two loops ta push and a pull)
if (maneuver {1}(j)==7 &% maneuver {1} j+1)==7)
% get lbime at which second Inop should start
{addedregime , addedinv}=findpreviine (maneuver, j+1}

H

n.alt=n_alt+l ;
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end

alterations{n.alt I}=[maneuver {1}(1:j) addedregime
maneuver{l}(j+1:end}] ,

alterations{n.alt ,2}=[maneuver {2}(i:j) § maneuver{2}(j+1:
end) ]

alterations{n_alt .3}=[maneuver {3}(1:3) O maneuver{3}(j+1"
end)] ;

alterations{n.alt .4}=[maneuver{4}(1-j) addedinv maneuver
{4}(j+1:end)]

alterations{n_alt ,5}=20

t foop secen after or before a turn
if (maneuver {1}(j)==2)

end
end
else

for i=0:1
% adding before and after
for addedinv=0:1
Y% both possible inverted status
n.alt=n.alt+l

alterations {n.alt ,1}={maneaver {1 }(1:j+i~-1) 7
manecuver {1} (j+1:end)] ;

alterations{n.alt 2}=[maneuver {2}(1:j+i~1) O
maneuver{2}(j+i:end)] ;

alterations{n.alt .3}={maneuver {3}(1:j+i~1 0
maneuver {3}(j+i:end)] ;

alterations{n_alt . 4}=[maneuver{4}(1:j+i~1}
addedinv maneuver {4}(j+1:end}]

alterations {n.alt ,5}=20 :

end

end

% undetected loop between two lines
% reconstruct angle between two lines

%
angles=[
fines=[1

tvi ¢l des v—¢  y—d nv 11— 1—d
0, 0, 45, 315, 90, 270. 180, 0. 135, 225 % level
0. 0, a, 0, 0, 0, g, 0, 0. 0 %
315, 0. 0, 270, 45, 225, 135, 0. 90, 180 % chimb
45, 0, 90, 0, 135, 315, 225, 0, 180, 270 % desc
270, 0, 315, 225, 0, 180G, 90, 0 45, 1358 % v~
chimb
90, ¢, 135, 45, 180, 0, 270, 0, 225, 315 % v—desc
180, 0, 225, 135, 270, 90, 0, 0. 315, 45 < inv
level
0. Q. 0, g, 0. 0, 0, 0. 0, 0 %
225, 0., 270, 180, 315, 135, 45, 0, 0, 890 % inv
c¢limb
135, 0. 180, 90, 225, 45, 315, 0. 270, O % inv
dese
15
3435 8]

for j=1-length(mancuver{l})-1
found=false .

i=0 ;

x

while(i<length (lines) && “found)
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=i+l

H (maneuver {1 }{j)==lines (i))
found=true ;

end
end
if {found)

% regime } is a line

i=0 ;

found=false

while(i<length(lines) && ~found)
i=i+1
if (maneuver{1}(j+1)==lines(i})

end

end

found=true

if {found)
% regime j+1 is also a line -> add both loops (imv
% or not)
switch (maneuver{4}(i))

end

case {-1, 0,3}
startinv=0 ;

case {1,2}
startinv=l ;

switch (maneuver{4}(j+1}}

end
for

end

case {-1,0,2}
finishinv=0 ;

case {1.3}
finishinv=}

addedinv=0:1

if (maneuver{1}(j)+6+startinv >10)
startinv=0 ;

end

if (addedinv==0}
addedparamchange=angles (maneuver {1}(j)+6%

startinv , maneuver{1}(j+1)+6xfinishinv)

else

addedparamchange=360—angles {maneuver {1}(j)+6x
startinv . maneuver{1}(j+1)+6xfinishinv) ;

end

distance=20xaddedparamchange /45§

n_alt=n_alt+l ;

alterations{n.alt .1}={maneuver {1}(1:j) 7 maneunver
{1} j+l:end)] ;

alterations {n.alt .2}=[maneuver{2}(1:j)
addedparamchange maneuver {2}(j+1;end}]

alterations{n.alt . 3}=[maneuver{3}(1:}) 0 maneuver
{3}(j+1iend)}

alterations{n_alt .4}=[maneuver{4}(1:j) addedinv
maneuver {4}(j+1:end)]

alterations{n.alt S}=distance;
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end

elseif (maneuver{1}(y)==7 && maneuver {1}{j+1)==7}
% line not seen between two loop {a pull and a push)
Goget hime a4t which second loup should sturt
[addedregime ., addedinv]=findpreviine (maneuver, j+1)

n.alt=n_alt+l

alterations{n.alt ,1}={maneuver{1}{1:j) addedregime
maneuver{ 1 }(j+1:end)]

alterations {n.alt ,2}=[maneuver{2}{1.3) 0 maneuver{2}(j+1:
end) ]

alterations{n.alt .3}=[maneuver{3}(1:§) 0 maneuver{3}(j+1:
end}]

alterations{n.alt 4}={maneuver{4}(1:3) addedinv maneuver
{4} (j+1l:end}] :

alterations{n_alt 53}=30 ;

end
end

% snttral level flight not seen
if {maneuver {1}(1)"=1)
% find start vy status
addedinv={0, 1]
% and add the hine
for i=1:length{addedinv)
n_oalte=n_alt+l |
alterations{n.alt ,1}=[1 maneuver{1}]
alterations{n.alt .2}=[0 maneuver{2}]
alterations{n.alt ,.3}=[0 maneuver{3}] :
alterations{n.alt 4}=[addedinv (1} maneuvey{«i}}
alterations{n.alt,5}=10
end
end
% final level flight not seen
if (maneuver{1}(end) =1)
% find start iav status
addedinv=[0, 1]
& and add the line
for i=1:length(addedinv)
n.alten.alt+l
alterations{n_.alt .l}=[maneuver{l} 1]
alterations {n.alt .2}=[maneuver{2} 0] :
alterations {n.alt 3}={maneuver{3} 0] ;
alterations{n.alt ,4}=[mancuver{4} addedinv(i)] ;
alterations{n.alt §}=10
end
end

end
% Alter a regume
% change a hne "s angle

lines=[1 3 4 5§ 6] ;
K +45 ~d45 from v
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else

newlines =(

3. 4, 4, 3@ level
0, 0, 0. 0%

5. 1. 1, 5% thimb
I, 6, 6., 1 % desc
3, 03, 0, 0% v-d

4, 4, 0, 0%\ ¢

1

for j=2:length (maneuver{1})-1

end

Y% chech wether ¥t 3w a line
found=false
i=0
while (1<length(lines) && “found}
i=i+l
i (maneuver{1}(1)==lines (i))
found=true ;

end
end
if (found)
G oget 1ts anverted status
switch (maneuver {4}(j))
case {-1, 0, 2}
inv=0 ;
case {1, 3}
inv=1 |
end
% and alter vt (+45 and —45 )
for i=1.2
regimes=maneuver{l} ;
mverted=maneuver {4} ;
if(regimes(j)==3 || regimes{(j)==6)
inverted (j)=i~1 :
end
regimes (j)=newlines (maneuver{1}{;), i+2xinv)
if (regimes{j)==5 || regimes(})==6)
inverted (ji=—1 :
end
n.alt=n_alt+l
alterations{n_alt ,1}=regimes
alterations{n_alt ,2}=maneuver{2}
alterations{n.alt ,3}=maneuver{3} :
alterations{n.alt 4}=inverted ;
alterations{n.alt . 5}=30 :
end
end

% Put the maneuwver itself 1n the hivt .
n.alt=]
alterations{n.alt,l}=maneuver{l} :
alterations{n.alt ,2}=maneuver{2} :
alterations{n.alt .3}=maneuver{3}
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alterations{n_alt 4}=manecuver{4} ;
alterations{n.alt,5}=0
end

end

D.7 Comparing Maneuvers (comparemaneuvers function)

This function measures the distance between two maneuvers that have the same regimes se-
quence. This is the function that considers errors in pitch angle change during loops, and errors

in rolls.

function distance=comparemaneuvers{maneuver, reference)
‘% compares a maneuver to a reference mancuver
“% returns the distance hetween the two if the regimes sequence match or
So- 1 af they don't

if{length (maneuver {1})==length {reference {1}))
match=true ;
j=t
while (3 <=length (mancuver{1}) && match}
if (maneuver {1}(j) =reference {1}(}) || (maneuver{4}(j) =reference
{4}(j) && reference {4}(j) =~1))
% wno mateh f a difference is noted on regimes sequence or
% inverted scguence {except 1f ynverteds | on reference |
% which means 1t does not matier)
match=false
end
1=j+1
end
if {(match}
distance=0
for j=1.length (mancuver{2})
if(reference {2}(j) =0}
% distance as a fuaction of parumeter change and
% referenve change n piteh angle
delta=abs(maneuver {2}(y)~reference {2}(j)) :
distance=distance+2+xdeltax{l~exp{~log(2)+(delta/20)"4))
end
% Cheekh for rolls
switch {reference {3}(i))
case O
% No roll authorized
if (maneuver {3}(j)>0)
distance=distance+30
end
case |
G Only full rell authonzed
if {maneuver {3}(j)==2)
distance=distance+30
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end
case 2
% Mandatery half roll
if {maneuver{3}(j)"=2)
distance=distance+30 ;

end
end
end
else
distance=-—1 ;
end
else
distance=—1
end

end

D.8 Plots scripts

graphs

This script generates the flight data graphs used in this report.

% plots graphs of flight data and associated regimes

fig{n._fig)=figure(n_fig) ;
figname{n.fig ,1}="01-Nz"
n.fig=n_fig+l ;
subplot (2 .,1.1)
hold on
plot(time Nz, k') ;
for n=1:length(flighttime)
plot ([simtime (flighttime {n}(1)) simtime(flighttime{n}{1)})], [—-10, 10}.

—-.k")
plot ([simtime (flighttime {n}{end)) simtime{flighttime{n}(end))}. [~10.
101, "—k’)

end

axis ([0 duration 10 10})

% legend( "Nz, "Location ', "Best ')
grid on

hold off

subplot(2,1.2}
held on
plot (simtime . states (:,1).°r")
plot (simtime , states {:,2) .°b")
plot (simtime , states (:.3).7g"}
for n=I1:length(flighttime)
plot ([ simtime (flighttime{n}(1)) simtime(flighttime{n}(1))], [~0.5. 1.5],

k)
plot ([ simtime (flighttime{n}(end)) simtime(flighttime{n}(end))], [-0.5,
1.5}, "—k")
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end

axis ([0 duration ~0.5 1.5

legend ("+/-1°, "pot 0, <0, "Location’, "Best')
grid on

hold off

fig(n.fig)=figure(n.fig) ;
figname{n_fig .1}="02~theta " ;
n_fig=n_fig+1l ;
subplet (2 1.1)
hold on
plot (time . theta, 'k’ ;
for a=l:length(flighttime)
plot ([simtime (flighttime{n}(1)) simtime(flighttime{n}(1))}. {~100. 100],

k)
plot (I simtime (flighttime {n}(end)) simtime(flighttime {n}(end))], [—1Q0,
100}, "~k
end
axis ([0 duration -100 100D
% legend( theta ", ‘Locauon . "Best )
grid on
hold off

subplot(2.,1,2)
hold on
plot {simtime , states {:.,4).'r")
plot (simtime , states (;,5).'g")
plot (simtime , states (¢ ,6),7b")
plot (simtime , states (:.7),'y")
for n=1:length(flighttime)

plot ([ simtime{(flighttime{n}(1)) simtime(flighttime{n}(1y))], [-0.5, 1.5},

LR
At

’

P k)
plot ([ simtime (flighttime{n}{end)) simtime{flighttime{n}(end)}], [~0.5,
151, "=k

end

axis ([0 duration -05 1.5}

legend (745", 907, "-45", -9, "Location', 'Best’)
grid on

hold off

fig(n.fig)=figure(n.fig) :
figname{n_fig .1}="03~phi" ;
n_fig=a_fig+l ;
subplet(2.,1.1)
hold on
plot (time ,bank, 'k’) ;
for n=1:length(flighttime)
plot ([ simtime (flighttime {n}(1)) simtime(flighttime{n}(1))7, [-200, 200],
k)
plot ([ simtime (flighttime {n}(end)) simtime(flighttime{n}(end))]. [-200,
2001, -k}
end
axis ([0 duration -200 200})
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% ltegend ( bank angle . ‘Location ™, ’Best )
grid on
hold off

sabplot(2.,1,2)
hold on
plot (simtime . states (:,12).,'r")
for n=1:length(flighttime)
plot ([simtime (flighttime {n}(1)) simtime(flighttime{n}(1))], [-0.5, 1.5],

k)
plet ({simtime(flighttime {n}(end)) simtime { flighttime{n}(end))], [~-0.5,
1.51, "—k")

end

axis ([0 duration -0.5 1.5])
legend { "Wings.level*, 'Location’, 'Best’)
grid on

hold off

fig(n.fig)=~Ffigure{n.fig)
figname{n_fig ,1}="04~-q" ;
n_fig=n.fig+l ;
subplot{2.1.,1)
hold on
plot(time ,q. k")
for n=1:length({lighttime)
plot ([ simtime (flighttime {n}(1)) simtime(flighttime{n}(1))]. [-100. 1007,

-k}
plot ([simtime (flighttime {n}(end)) simtime(flighttime{n}{end))], [~100,
1001, "=k

end

axis ([0 duration —100 100])

% legend{ pitch rate ", "Location . "Best)
grid on

hold off

subplet(2.1.2)
hold on
plot(simtime , states {:.10),7r") ;
for n=1:length({flighttime)
plot ([ simtime (flighttime {n}(}1)) simtime(flighttime{n}(1))]. {05, 1.5],

k)
plot ([simtime ( flighttime {n}(end)) simtime(flighttime{n}(end))]. [-0.5,
1.51, "~k7)

end

axis ([0 duration -05 1.5

fegend ("not. 0", 'Location’, *Best’)
grid on

hold off

fig{n.fig)=figure{n.fig) :
figname {n.fig .1}="05-p" ;
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n.fig=n_fig+l ;
subplot(2.1.1)
hold on
plot(time .p, k")
for n=1:length(flighttime)
ph}t(isimtime(fiighttime{n}(l)) simtime { flighttime{n}{1))}. [-300, 300],

k)
plot([simtimc(fiighttime{n}(ené)) simtime ( flighttime{n}{end))]. [-300,
3001, "~k
end
axis ([0 duration ~300 300
% legend{ roll rate'. "Location .,  Best ")
grid on
hold off

sabplot(2.1.,2)
hold on
plot{simtime, states {:.9),’r")
for n=l:length(flighttime)
plot ({simtime (flighttime {n}(1)) simtime{flighttime{n}(1))]. [-0.5, 1.5],

‘—k)
plot ([ simtime (flighttime {n}(end)) simtime{flighttime{n}(end))}, [-0.5,
1.5, "=~k

end

axis ([0 duration -05 1.5}
legend( "not. 0", 'Location'. 'Best’)
grid on

hold off

fig{(n_fig)=figure(n_fig) :
figname{n_fig .1}="06—1r" :
n fig=n_fig+l
subplot(2,1.1)
hold on
plot{time ,r, 'k") ;
for n=1:length{flighttime)
plot ([ simtime (flighttime{n}(1)) simtime(flighttime{n}(1))1, [-50, 50], °

—. k")
plot ([ simtime (flighttime {n}(end)) simtime(flighttime {n}(end))]. [-50.
50}, —.k")
end
axis ([0 duration -30 50D
% legend{ yaw rate *. ‘Location’, “Best )
grid on
hold off

subplot(2.1.2)
hold on
plot (simtime , states {(:,11).7r")
for n=1l:length(flighttime)
plot{[simtime(flighttime{n}(1)} simtime{flighttime{a}(1))]. [-0.5. 1.5,
k)
plot ([simtime ( flighttime {n}{end)) simtime(flighttime{n}(end))], [-0.5,
1.8, '~k")
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end

axis ([0 duration ~0.5 1.5])

legend ("not. 0", 'Location’, *Best’)
grid on

hold off

plotmaneuvers

This script generate the graph that is used to generate the regimes during maneuvers figures.
It consists of a plot of the regimes vector evolution in time, along with captioning the legs from

the flight description.

% Creates a plot of regimes after ltowpass filter with marks at regimes
% transitions and anvisible labels on regimes

fig{n.-fig)=figure(n.f1g) ;
n.fig=n_fig+l ;

hold on

grid on

plot (simtime , regimes.lowpass(:,1), "Color’, [§ 0 0}) ; % straight & level

plot(simtime . regimes.lowpass(.,2). "Color’, [0.749 0 0 749)) : % turn

plot(simtime , regimes_lowpass(",3), "Color’, [0 0 1]} ; % climb

plot (simtime , regimes_lowpass{(:.4), "Color’, [0 1 0]} : % descent

plot (simtime, regimes.lowpass{(:.5), "Ceolor’, [0.8 0.8 0.8]) ; % V-—climb

plot (simtime , regimes_lowpass(:,6), "Color’, [0.5774 05774 0.5774]) ; % V-
desc

plot(simtime ., regimes.lowpass(:,7), "Color’, [{0.694 0.5744 0.392]) : % loop

plot {simtime , regimes_lowpass(:,8), "Ceolor’, [0.8 0.8 0.8]) : % tayishide

plot (simtime , regimes_lowpass(:.9), "Celor’, [1 0 0]} ; % roll

plot (simtime , regimes._lowpass(:,10). "Color’, [0 0.5744 0.5744]) ; % inverted

axis ([0 duration -05 1.5}])

% tegend( " Level " "Turn™"Chmb . Descent " Vechumb * | "Vedesvent 7, .
G “Loop ' . Taulslide " Reoll 7 Inverted 7.7 Locatron "7 BastQutside 1

y.text=-0.15
for n=l:length(flighttime)
for j=1:(length(flighttime{n})- 1)
plot ([ simtime{flighttime{n}{(;)) simtime(flighttime{n}(in1. [-0.5,
1.5]. "=k
x. text=({simtime (flighttime{n}(j))+simume({lighttrme{n}{y+111)/2
if(y.text==-0.15)
y-text=-03
else
y.text=-0.15
end
texthandle {n,1}(j)=text(x.text, y.text, regimeskey(flight{n.1}(j)).
HorizontalAlignment', “center', "Visible ., "Off"} ;

»

end
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end
clear x_.text y_text
hold off

B

savefigures

This script was developed to make saving all figures generated by the program easier. It

formats the figures to two different formats and saves a version of each one for integration in this

report and the presentation.

% Esports the frigures in currenl directory

for :1.fig=1:length(fig)-1
figure(i.fig)
set(gef . "PaperPositionMode’, “auto )
set{gef. "Position’, [0 50 800 400} ;
print(’~dpng’ ,streat(figname{i_fig}, .big.png’}) ;
set{gef, "Position', [0 50 400 300)) :
print{’—dpng’,strcat(figname{i_fig}, .png')) :
print(‘~deps’ .strcat(figname{i.fig}," eps’}) ;
end

figure(fig(end))

if (sequence==l)
filename={"11-Climb"; "12—-Dive ": "13~Cuban " ; *14~Loop’: *15—Turn "; "16—Roll "}

elseif {sequence==2)
filename={"21-S.1";"22~8.2"; '23—Square.l’; *24~Square_2 '; '25-Sguare.3 " "
26-X":’27—-Rev_.Cuban'; '28—Loop_roll *; "29—Immelmann’} :
end
for n=1:length(flighttime)
axis ({ stmtime (flighttime {n}(1)) simtime(flighttime{n}(end)) 0.5 1.57) ;
for j=l:length(texthandle{n})
set(texthandle{n}(j). "Visible ., “on")
end

set(gef, 'PaperPositionMode ., Tauto’, '"Position’ . [0 50 600 400}])
print("—dpng’. streat{filename{n}, .big.png"}) :
set (gef, 'PaperPositionMode™, ‘auto’, "Position . {0 30 400 300D
print{ —dpng', strcat(filename{n}. .png’))
print( ~deps', strcat{filename{n}. .eps’'}))
for j=1l:length (texthandle{n})
set(texthandle{n}(})., ’Vistble’, “off")
end
end

if(sequence==2)

% group maneuvers 1 oand 2 (itwo legs of $) on the same graph
axis ([ simtime (flighttime {1}(1)) simtime(flighttime {Z}(end}) -0.5 1.5])
for n=1:2
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for j=1:length (texthandle{n})
set{texthandle{n}(j), 'Visible', ‘on"}) ;
end
end
print(’~dpng’. '2i-S.png') ;
print{’—deps’. "21-S.eps’) :
for n=1:2
for j=l:§ength(texthandie{n})
set(texthandle{n}(j). ’Visible', ‘off’)
end
end
% group mancuvers 3. 4 and $ on the same graph
axis ([simtime (flighttime {3}(1)) simtime(flighttime {S}(end)) -05 1.51) ;
for n=3:5
for j=l:length (texthandlce{n})
set(texthandle{n}(j). 'Visible"', “on') ;
end
end
print{('—~dpng’, '23—Square.png’') ;
print("—deps’ . "23-Square.eps’)
for n=3:5
for j=Il:length(texthandle{n})
set(texthandle{n}(j). "Visible', “off') ;
end
end
end

D.9 Minor Functions

A few more functions were defined and used in the process,

Maneuvers Description Output
This function outputs the description of the maneuvers in Matlab prompt. It basically calls

printlegs for each maneuver.

function printmaneuvers{flight)
% displays maneuvers description in the command window
for n=1:length(flight{:.1))
fprintf{ Maneuver.%i’, n)
printlegs (flight(n.1:4))
if (length (flight(n, 1)) >=6)
if (“isempty(length(flight{n. 6}
fprintf( '\ nldentified .as.%s . flight{n.6})
end
end
fprintf ("\n\n") ;
end
end

77



Legs Description Output

The printlegs function outputs the description of the legs n sequence m Matlab prompt

function printlegs(legs)
for 1=1 length(legs{1})
regime= " |
switch (legs {1}(1))
case 1
if ((1>] && r<length{legs{1})) |; legs{3}(1)7=0 || legs{4}(1)
regime="fioinolevel . flight’

®

end
case 2
regime="deg.in.a.tarn’
case 3
regime="ft_.climb’ ,
case 4
regime="ft.descent’ |
case 5
regime="ftovertical .climb”
case 6
regime="ftovertical .descent’ |
case 7
regime="deg.in.a.loop’ ,
case 8
regime="tatlslide ™ ,
end
if(legs{4}(1)==1)
regime=strecat(regime , “.{inverted)’) ,
end
switch(legs {3} (1))
case 1
regime=strcat (regime, ‘.withoroll’)
case 2
regime=strcat (regume , ' _withohalforell”)
if (legs {4} (1) ==2)
regime=strecat (regame, “.to.inverted ) ,
elseif(legs {4}(1)==3)
regime=streat (regume *ofromoinverted ')
end
end

if ("isempty (regime))
fprintf (’\n%: %s , round(legs{2}(1)), regime) ,
end

end
end

Regimes Key

The regimeskey function makes the correspondance between regumes mndices and names.
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function textregime=regimeskey (regime)
Y% regime number to name
switch {regime)

case |
textregime="Level "
case 2
textregimes="Turn’
case 3
textregime="Chmb"’
case 4
textregime="Descent’
case 5
textregime="V-Climb" ;
case 6
textregimes="V-Descent " ;
case 7
textregime="Loop" ;
case 8
textregime="Tailslide " ;
case {9, 10}
textregime="Roll"~
default
textregime="Unknown’
end
end

Previous line
Used to determine which lines can cut a loop leg, by determining on which line the loop

started. Also used when adding a loop in between two lines.

functien [previousline , previousinverted]=findpreviine (maneuver,j)
% gets the line from which current loop () »tarted
found=false ;
i=j—1 3
angle=0 ;
while (" found && 1>0)
switch (maneuver{1}(1})
case {1, 3. 4, 5. 6}
previousline=maneuver{1}(i) ;
previousinverted=maneuver {4}(1)
found=true ;
case 7
% rexcord loopy angle
if (maneuver {4}(i)==0}
angle=angle+manecuver{2}(1)
else
angle=angle maneuver{2}(i)
end
end
imi-1 ;
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end

end
if (" found)
previousline=l ;
previousinverted=0
end
if(angle ™ =0)
% lrnes reached from e
% 43 90 133 180 2
getline=[3_ 5. 3, 1,
4, 6, 4, 1,
1
getinverted=[0, O, I, 1. 1, 0, 0, 0] :
index=round (abs{angle)/45) ;
if{angle >0)
dir=1
else
dir=2

el with

5 270 315 260

4, 6, 4.1 % pull
3, 5, 3,1 % push

v
2

end
offset=[{0, 0, 1, 7. 2, 61 .
offset=offset(previousline)+4+previousinverted |
index=index+offset ;
while {index >8)
index=index —8 ;
end
previousline=getline (dir, index) ;
previousinverted=getinverted (index)
end
switch{ previousinverted)
case {-1, 3}
previousinverted=0
case 2
previousinverted=l
end
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