
Theses - Daytona Beach Dissertations and Theses

Fall 2009

Flight Regime and Maneuver Recognition for Complex Maneuvers Flight Regime and Maneuver Recognition for Complex Maneuvers

Jerome H. Travert
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/db-theses

 Part of the Aerospace Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Travert, Jerome H., "Flight Regime and Maneuver Recognition for Complex Maneuvers" (2009). Theses -
Daytona Beach. 200.
https://commons.erau.edu/db-theses/200

This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at
ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an
authorized administrator of ERAU Scholarly Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-theses
https://commons.erau.edu/dissertation-theses
https://commons.erau.edu/db-theses?utm_source=commons.erau.edu%2Fdb-theses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fdb-theses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/db-theses/200?utm_source=commons.erau.edu%2Fdb-theses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

FLIGHT REGIME AND MANEUVER RECOGNITION
FOR COMPLEX MANEUVERS

by

Jerome H Travert

A Thesis Submitted to the
Graduate Studies Office

In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Aerospace Engineering

Embry-Riddle Aeronautical University
Daytona Beach, Florida

Fall 2009

UMI Number: EP32001

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform EP32001

Copyright 2011 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by Jerome Hubert Pierre Travert, 2009

All Rights Reserved

FLIGHT REGIME AND MANEUVER RECOGNITION FOR COMPLEX MANEUVERS

by

J6rome H Travert

This thesis was prepared under the direction of the candidate's thesis committee chairman, Dr.

Richard "Pat" Anderson, Department of Aerospace Engineering, and has been approved by the

members of his thesis committee. It was submitted to the Department of Aerospace

Engineering and was accepted in partial fulfillment of the requirements for the degree of Master

of Science in Aerospace Engineering.

THESIS-TOMMTTTEE:

Dr. Bogdan Udrea

Member

Professor Charles Eastlake

Member

Coordinatoir-MSAE Program

&<?,<6x
4p\artment Chair, Aeraspase Engineering

**/l/'1
Date

/ 2 * A^/ot
Date

111

ACKNOWLEDGEMENTS

This thesis is a great step in the dual degree program I entered three years ago, and it wouldn't

have been possible without the help of many people. It was performed under the supervision

of Dr. Richard "Pat" Anderson, whose help and insights throughout this project was of great

value and deserves many thanks. In addition, I would like to thank the members of the thesis

commitee, Dr. Udrea and Professor Eastlake for the interest they show in this research.

Thanks also to the other people who participated directly or inderectly in this thesis, for

example Christopher Brown, who set up the flight simulator for me, Mikhael Ponso, who gave

me insights about aerobatics and helped me generate data when flying the simulator, and all the

people at the Flight Research Center, who helped me when I needed it throughout this project:

Brett Mather, Monica Londono, Harshad Lalan, Kashif Ali, Lori Costello and Shirley Koelker.

A more personal thank you to my friends from the ERAU/EPF dual degree program,

that brought me here, Florent Lucas, Julien Thivend and Camille Decoust, for helping me out

when I first arrived in Daytona two years ago, Steven Armstrong, Francois Mandonnaud, Noah

Becker and Mathieu Naslin, for sharing their interests and friendship all along this program, and

the newly arrived students from EPF, Laurence Rebeche and Milena Perret, for being patient and

showing interest when I tell them about engineering and particularly my thesis.

And finally, many thanks to my friends and family in France and in the United States, in

particular my parents for never doubting my degree choices and supporting me during my stay

in Daytona Beach, my twin brother Christophe, for pushing me into giving the best of me even

when an ocean splits us apart, Denise Maurice whose support and love helped me through this

degree, and all the others who I cannot exhaustively list, for their friendship.

IV

ABSTRACT

Author: Jerome H Travert

Title: FLIGHT REGIME AND MANEUVER

RECOGNITION FOR COMPLEX MANEUVERS

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Aerospace Engineering

Year: 2009

The purpose of this study is to demonstrate capability of flight regime recognition during

complex maneuvers flown in a fixed wing airplane using measured data from an Inertial Mea

surement Unit (IMU). Flight Regime Recognition (FRR) is required for numerous applications

in the aerospace and aviation industry, including the determination of loads for stress and strain

analysis. It can also be used in recreational aviation for maneuver recognition, for example in

aerobatics.

This study uses a flight simulator to generate representative flight data that is parsed by

a specifically developed algorithm into appropriate flight regimes. This algorithm is a filter tech

nique that uses states based on the aircraft's attitude, accelerations and rates and compares them

to known trajectories for the identification of specific maneuvers. Particular care has been taken

to ensure appropriate noise rejection and tolerance to errors in the realization of the maneuver.

Presented here will be a particularly challenging test case of identification of complex

aerobatic, aresti maneuvers, from specific flight trajectory. Results are conclusive in terms of

regime recognition but further testing of the maneuver identification algorithms will be necessary

in order to derive a robust maneuver recognition program.

TABLE OF CONTENTS

Acknowledgements iv

Abstract v

Abstract v
•

1 Introduction 1

1.1 Flight Regime Recognition 1

1.2 Pattern Recognition 2

1.3 Competitive Aerobatics 2

2 Scope and Applicability 3

2.1 Problem Statement 3

2.2 Literature Review 4

2.3 Objectives 5

3 Flight Regimes Recognition Algorithm 6

3.1 Regimes Used 6

3.2 Characterization 7

3.3 Right States 8

3.4 States to Regimes Transition 10

4 Aerobatic Maneuvers Identification 12

4.1 Aresti Notation 12

4.2 Maneuver Representation 14

4.3 Error Correction 15

4.4 Distance Measurement 16

4.5 Identification 18

vi

5 Tests and Results 19

5.1 Data Acquisition 19

5.2 Data Treatment 19

5.3 First Sequence 19

5.3.1 States Observed 21

5.3.2 Maneuvers' Description 22

5.4 Second Sequence 29

6 Conclusion 36

References 38
•

Appendix 40

A Data Acquisition Model 40

B Flight Regime Recognition Model 42

C States Observed During First Sequence 44

D Source Code 47

D.l Main Program (Import script) 47

D.2 Catalog Parsing (loadcatalog function) 49

D.3 Flight Decomposition into Legs (getflightlegs function) . . . 54

D.4 Legs Filtering (trim_maneuver function) 56

D.5 Maneuvers Identification (getmaneuvers function) 58

D.6 Mapping (altermaneuver function) 60

D.7 Comparing Maneuvers (comparemaneuvers function) 70

D.8 Plots scripts 71

D.9 Minor Functions 77

vn

LIST OF FIGURES

1 State (\NZ\ « 1) as a function of Nz 9

2 Cost of errors in parameter change 16

3 Maneuver identification technique 17

4 Identification example: badly flown cuban 18

5 Data treatment algorithm 20

6 First test sequence 20

7 Regimes during climb 23

8 Regimes during vertical descent 24

9 Regimes during half cuban 25

10 Regimes during loop 26

11 Regimes during turn 27

12 Regimes during roll 28

13 Second test sequence 29

14 Regimes during vertical S 30

15 Regimes during square loop 31

16 Regimes during bow-tie 32

17 Regimes during reverse half cuban 33

18 Regimes during avalanche (loop with roll on top) 34

19 Regimes during Immelmann 35

20 Data acquisition model 41

21 Flight Regime Recognition model - top level 42

22 States determination block 43

viii

23 Implementation of equation 1 in Simulink 43

24 Sequence 1 - Load factor 44

25 Sequence 1 Pitch angle 44

26 Sequence 1 - Bank angle 45

27 Sequence 1 - Pitch rate 45

28 Sequence 1 - Roll rate 46

29 Sequence 1 Yaw rate 46

LIST OF TABLES

1 Characterization of flight regimes 8

2 Flight states 9

3 Tolerances used for states determination 11

4 Aresti representation of simple maneuvers 13

5 Errors considered and associated distance 15

6 Sequence of legs detected for the first sequence 22

7 X Plane data export settings 40

IX

1 INTRODUCTION

The need for flight regime recognition is very present in aircraft maintenance and continued

airworthiness: knowing the events the aircraft has seen in his lifetime are of great help for

maintenance actions, failure prevention and life extension[l][2][3]. It can also be used, as in this

study, for a different purpose: telling how maneuvers were flown, which can help a pilot to try

improving his maneuvering skills, an instructor tell what his student did wrong, or a competition

judge grade an aerobatic program.

1.1 Flight Regime Recognition

Flight regimes are specific conditions under which an aircraft flies. In a standard commercial

airplane flight, regimes usually seen include take off, climb, cruise, loiter, descent and landing.

Real-time flight regime recognition can allow an autopilot to automatically select its functioning

mode when triggered, or to correct for a mistake in mode selection, allow a pilot take measures to

avoid regimes that present a danger for the safety of the aircraft, or an instructor help his student

improve his flying skills with well defined metrics. Post-processing flight regime recognition can

help the technicians maintaining an aircraft to know the solicitations seen by the different parts

of the vehicle, and deduce necessary maintenance actions to be taken on those parts[4] [5] [6].

In the case of maneuver identification, the picture is slightly different since the regime

recognition is used for another purpose: sequencing flight legs and aircraft attitude for recon

struction of its flight. This can be done straight from flight data, but the analysis of an aircraft's

flight from raw data is a very time consuming process, and requires advanced methods such as

neural network[7] in which neither the candidate nor his supervisor had prior knowledge, and

was therefore not considered.

1

1.2 Pattern Recognition

Pattern recognition is the analysis of data, searching for known motives, in our case, for regimes

and then specific sequences of regimes flown by an aircraft. Classical pattern recognition al

gorithms used for example in optical and speech recognition first involve isolation of possible

pattern from the rest of the data, sometimes called filtering, then some kind of treatment to see

the major features of the studied data, and finally tries to match the figure it has seen to one of

several known reference patterns [7] [8].

In this study, two pattern recognitions are performed: the first one for regime recognition

at each time step, comparing flight data to reference values to find major traits of the flight and

classify the aircraft's behavior into flight regimes, and a second one for identification of flight

regimes sequences to one of the catalog's maneuvers.

1.3 Competitive Aerobatics

Aerobatics are the practice of flying maneuvers that are not used in normal flight, for entertain

ment of both the pilot and his public. It explores all dimensions of its flight domain -horizontal

plane as well as altitude and aircraft rotations- and often gets close to the aircraft's limitations.

Competitive aerobatics is the use of aerobatics skill for competition. Applications of similar

practices also include in-flight demonstration, which shows aircraft capabilities, generally for

commercial purposes, and combat, where the pilot tries to take advantage on his opponent using

his piloting skills and his aircraft's maneuverability.

Aerobatic maneuvers are sequences of aircraft attitudes and are regulated and rated for

competition. Grades are traditionally given by judges who observe the maneuvers by eyeball,

from the ground, with well-defined criteria[9]. This way of judging flight skills suffers from

some drawbacks, one of which is being accused of subjectivity. A solution to that can be found

by the addition of a computer that helps the judges know how the maneuver was flown, and

removes the subjectivity.

2

2 SCOPE AND APPLICABILITY

Many applications using Flight Regime Recognition have been designed for usage monitoring

of aging military aircraft[2][5][6], but FRR for commercial and general aviation aircrafts has

been subject of little investigation available in the public domain, including at Embry-Riddle

Aeronautical University[l][4] and in the aerospace industry[3], even though it would bring the

same improvements in these fields as it would to the military aviation.

2.1 Problem Statement

General aviation and commercial FRR algorithms available in the public domain cover most

common regimes for a normal cross country flight, and do not address atypical regimes seen for

example in aerobatic and demonstration flights. Such regimes are however especially demand

ing for aircraft structures and should enter into consideration when monitoring flight loads on

aircrafts that see them on a regular basis. The demonstration of capability for Flight Regime

Recognition in complex maneuvers is therefore an important step in aircraft usage monitoring.

The case of interest of this study is aerobatic maneuvers, and one application of Flight

Regime Recognition is flight legs reconstruction, which is also of interest in this field: being

able to determine the sequence of regimes seen by an aircraft allows determining how well the

intended program was performed, or identification of maneuvers that were flown. Advanced

maneuver identification is of great interest for competitive aerobatics ratings as well as training

and for flight instruction in general.

3

2.2 Literature Review

Flight Regime Recognition has been studied extensively for rotorcraft aging and fatigue analysis

for all sorts of helicopters: commercial[3], military[2][5][6] and general aviation[4].

For military aircrafts, the cost of data acquisition and treatment is usually not a limit

ing factor, and complex data acquisition systems and detailed algorithms have been used. For

example the US Army Integrated Mechanical Diagnostic System (IMDS) records 16 parameters

for filtering and decomposition into 65 very detailed regimes, sometimes with very small differ

ences between two regimes [2]. This leads to complex and time consuming treatment, that could

induce a high cost for both the flight recorder and the post-treatment station. .

On the other hand, general aviation FRR algorithm are more modest and only use limited

data channels for regime recognition as well as a reduced set of regimes that aims at qualifying

the flight profile rather than quantifying flight loads with great details[l][4], which means large

scale application expect a limited cost for the flight recorder as well as the treatment station.

Approaches used are however very similar, using the range in which each parameter is

to allow classification of the current flight regime in a specified set. Only the level of detail

differs: where military algorithms decompose the flight into dozens of different regimes, general

aviation algorithms use less than 10 regimes.

All these studies aimed at helicopter structural monitoring, and very few applications

of FRR algorithm in fixed wings aircrafts have been found. A study of general aviation fixed

wing aircraft loads was conducted at Embry-Riddle Aeronautical University by David Kim[l],

It used a neural network approach to find a relationship between the flight parameters and the

loads seen by different parts of the aircraft for a set of regimes seen in normal operation. Results

showed that a classification of the flight parameters into regimes along with the neural network

operation provided better results and a Flight Regime Recognition algorithm was developped for

that purpose. It used a neural network approach to classify the flight maneuver into 5 different

types to allow more accurate prediction of the flight loads.

The results of Kim's study were conclusive for regime recognition in 5 simple maneu

vers that were estimated sufficient to cover the range of normal general aviation airplane usage.

4

2.3 Objectives

This study aims at demonstrating Flight Regime Recognition capability for complex, aerobatic

maneuvers that involve unusual flight regimes and transitions, with a minimum data set and

a possible real-time implementation. The set of regimes is more evolved than those used for

general aviation airplanes as it is not limited to normal cross country operations, but whole of

competitive aerobatics flight domain.

This study also intends to identify maneuvers flown, gathering time dependent flight

regimes into maneuver legs in order to enable a qualitative evaluation of the flight that could

eventually lead to a quantitative grading of the program flown. For that purpose the flight regimes

are limited to a reasonably-sized set to allow identification of flight legs from the flight regimes

history with just enough details to describe the flown maneuver.

5

3 FLIGHT REGIMES RECOGNITION ALGORITHM

Aerobatic maneuvers are the combination of a flight path and rotations of an aircraft along its

pitching and rolling axes. They are combinations of six basic regimes: lines, turns, loops, rolls,

spins and tailslides[10]. In power competition, lines can be flown at 5 different angles from the

horizontal line: 0°, 45°, 90°, -45° and -90°[10]. A maneuver is a sequence of flight regimes, and

determining, at each time step, in which regime the airplane flies is the first step for maneuver

identification.

3.1 Flight Regimes Used for Aerobatics

In this study, rolls and spins have been treated differently, as they are elements that superim

pose on other regimes, and not regimes by themselves. Spins have been neglected as they only

bring complexity to the recognition algorithm, and can be added once a good understanding of

maneuver identification is achieved. This gives us a total of eight basic regimes:

• Level flight: 0° straight line

• Turn: heading change at high bank angle, aircraft stays on a horizontal plane

• Climb: +45° straight line

• Descent: -45° straight line

• Vertical Climb: +90° straight line

• Vertical Descent: -90° straight line

• Loop: progressive change in flight path angle, aircraft stays on a vertical plane

• Tailslide: airplane goes down tail first

All these regimes can be flown with addition of rolls, and can also be flown in two

different ways: with positive or negative normal load factor (except for vertical lines, which

are supposedly flown with a normal load factor of 0), which gives us two additional flags that

superimpose on the regimes: a roll flag, as well as a "negative load factor" or inverted flag.

6

3.2 Flight Regimes Characterization

Flight regimes were studied to find relevant parameters for their characterization. Parameters

were added until each regime would be a unique combination of flight data. Table 1 summarizes

regimes characteristics.

Pitch rate (q) is the first parameters to distinguish lines from loops: a 0°/s pitch rate means

the aircraft's flight path is close to a straight line, a different pitch rate means the aircraft

is either flying in a loop or a turn.

Pitch angle (0) allows distinguishing lines from each other. This would preferably be

done using flight path angle (except for Diagonal Lines, where the criterion is attitude and

not flight path), but simpler measurement made pitch angle the variable of choice. The

difference between flight path and pitch angle is to be accounted for by higher tolerances

in detection of flight parameters. For Horizontal lines, it was considered redundant with

the load factor criterion.

Yaw rate (r) is used to tell loops apart from turns: the turn is the only regime where a yaw

rate should be present: a non-zero yaw rate means the airplane is in a turn, a non-zero

pitch rate with no yaw rate means it is in a loop.

Airspeed is also measured for Tailslide detection: it is the only regime flown at a negative

airspeed. In the algorithm presented in this study, True Airspeed (TAS) was used, but since

it is only for sign discrimination, standard measurement of airspeed (Indicated Airspeed)

or even axial speed of the aircraft (u, from an IMU) should be acceptable.

Roll rate (p) characterizes rolls.

Load factor (Nz), more accurately normal load factor, is required for the inverted flag,

which is to be active when the load factor is negative. For aerobatics rating, vertical and

horizontal lines have criterion in terms of load factors, which are also taken into account.

Bank angle (</>) is also taken into account as a redundancy check for ensuring a turn is

performed accordingly to grading criterion which states "Turns should be flown at bank

angles of at least 60°"[9],

7

Regime
Level Flight

Turn
Climb

Descent
Vertical Climb

Vertical Descent
Loop

Tailslide
Roll

Inverted

TAS
> 0
> 0
> 0
> 0
> 0
> 0
> 0
< 0
X
X

Nz(g)
»±1

X
X
X

» 0
« 0
X
X
X

< 0

P (°/s)
0
0
0
0
0
0
0
0

760

X

q (°/s)
0

96 0
0
0
0
0

96 0
X
X
X

r (°/s)
0

96 0
0
0
0
0
0
X
X
X

<t>(°)
0

> 6 0
0
0
X
X
0
X
X
X

on
»o
* 0

w45
w - 4 5
« 9 0

« - 9 0
X
X
X
X

Table 1: Characterization of flight regimes
X representing a non-specific value.

3.3 Flight States

Flight states are used for identification of a flight regime. They tell whether a flight parameter

is equal (respectively different) to a reference value, with a certain tolerance to account for

approximations and noise. Each states activity is a value taken between 0 and 1 depending on

how close the parameter is to the reference value, 0 meaning completely off (respectively close)

and 1 very close (respectively very different). States are an intermediate step between flight data

and regime recognition, derived from table 1 values of flight parameters, and listed in table 2.

The states that tell whether a parameter x is close to a reference value xTef or not are

computed using a function / of the distance Ax = x - xref given in equation 1, where K is

computed to satisfy the third criterion: K = tJ^ce4, and plotted for the (|JV2| « 1) state in

figure 1. This function was designed for the following characteristics:

• /(Ax) « 1 when Ax < \ x tolerance

• /(Ax) — 0 when Ax > 2 x tolerance

• /(Ax) = 0.5 when Ax = tolerance

/(Ax) -KxAx4

(1)

For states that tell whether the parameter is far from a reference value (all 56 0 states), the

function defined in equation 1 is subtracted from 1 to get the states activity: state = 1 - /(Ax).

State
\N,\ « 1
NZ^Q
Nz<0
0^45°
«9 ?» 90°
0 « -45°
6 ss -90°

TAS<0

p^O

q^O

r # 0

<j> $ 0° or 180°

Application
Level Flight characterization
Vertical Lines elimination
Inverted status

Lines discrimination

Tailslide characterization
All other regimes elimination
Roll detection
Level and Loop elimination
Loop characterization
Lines elimination
Turn characterization
Loop elimination
Turn elimination

Table 2: Flight states used for regime identification

os -

-4 -3 -Z -1 0 1 2 3 4

Figure 1: State \NZ\ « 1 as a function of Nz (tolerance=0.5)

This is used for computation of all states except Nz < 0 and TAS < 0, which are treated

individually, because of their particular aspect. The airspeed state, TAS < 0 is the only non

continuous state, as it is very unlikely that an airspeed close to 0 is maintained in a non-transient

way. It is defined as the logical result of comparing TAS to 0. The inverted state, however

requires a continuous definition since a Og load factor often happens, and close to 0 but positive

values could be seen in inverted legs. The definition chosen in this case is a multi-linear function

defined as: 1 when Nz < 0, 0 when Nz > 0.5 and the linear interpolation 2 x (0.5 - Nz) in

between.

9

3.4 States to Regimes Transition

The states to regime transition is performed using an adaptation of table 1 to the states, ar

ranged in a vector for easier manipulation. The probability of being in each regime is de

ducted from the applicable states. It is computed for all regimes using matrix multiplication:

{regimes} = [H] x {states} where the states are ordered as in table 2, the regimes as in table 1,

and H is an adaptation of table 1, tuned for correct regimes detection throughout all test flights:

1—1

" l

0

0

0

0

0

0

0

0

0

o

0

0

0

0

- . 4

- . 4

0

0

0

0

o
V

0

0

0

0

0

0

0

0

0

1

o
in

II

- 1

- 1

1

0

0

0

0

0

0

0

0

o
II

•as

- 1

- 1

0

0

1

0

0

0

0

0

o
lO

1
II

- 1

- 1

0

1

0

0

0

0

0

0

0

o
l

II

- 1

- 1

0

0

0

1

0

0

0

0

o
V

- 1

- 1

0

0

0

0

- 1

1

0

0

o

a,

- . 7

- 1

0

0

0

0

- . 7

0

1

0

o

- . 7

0

- . 7

- . 7

- . 7

- . 7

1

0

0

0

o

8 .

- . 5

1

0

0

0

0

- . 5

0

0

0

o
O

-e-

0

- 1

0

0

0

0

0

0

0

0

Level Flight

Turn

Climb

Descent

V-Climb

V-Descent

Loop

Tailslide

Roll

Inverted

This whole process is the flight regime recognition algorithm used in this study, and

gives conclusive results when proper tolerances are set in the states determinations process. It

is to be expected that those tolerances can vary from one aircraft to another, or from a pilot to

another: even though judging criteria don't vary, it is important to make sure the flight states are

in agreement with what was intended by the pilot. For instance, the initial tolerance on pitch rate

(8°/s), adapted to Dr. Anderson's flights has proven to be too high for Mikhael Ponso's flights,

who is pulling his loops with a lower pitch rate (around 6°/s).

A possible way of accounting for those differences is allowing calibration of tolerances

10

States
Nz ss 1
Nz^0
(9 = 45°

0 = -45°
(9 = 90°

0 = -90°
p?£0
0960

q^O
r 96 0

Tolerance

0.5

10°

20°

40°/s
15°/s

Dr. Anderson
8°/s
5°/s

M. Ponso
5°/s
10°/s

K value

11.09

7 x 10-5

4.33 x 10"6

2.7 x 10"7

1.4 x HTb

Dr. Anderson
1.1 x 10"a

1.7 x 10"4

M. Ponso
1.7 x 10-3

7 x 10-°

Table 3: Tolerances used for states determination

by flying a sustained leg in each regime prior to starting the aerobatics sequence. The tolerances

used for each pilot are shown in table 3 and were determined by tuning for proper regime recog

nition as well as for respecting aerobatic ratings criteria. For example, the tolerance on (9 — 90°)

is high since the judging criteria is not based on pitch angle but vertical flight path, which is seen

on IMU data by a Nz value of 0. The FRR algorithm requires knowledge of 9 so it does not con

sider vertical climb if the pitch angle is small, even if the load factor matches the requirement

(Nz w 0). For this particular regime, the considerations are inverted because of initial choice, but

similar results are expected using either o (S a 90°) -b(Nz^ 0) or a' (0 « 90°) + 6' {Nz w 0),

with tolerances and coefficients adapted to each case.

11

4 AEROBATIC MANEUVERS IDENTIFICATION

A standard pattern recognition algorithm was used for maneuver identification from flight regime

evolution. It is done by 2 important steps: the organization of regimes into "words" that we

call maneuvers and the identification of the maneuver seen to one of the known maneuvers. It

requires knowledge of possible maneuvers to which the reconstruction from flight data will be

compared for identification.

Aerobatic maneuvers are referenced for competition in a catalog named the Aresti cat

alog, after the Spanish aviator Jose Luis de Aresti Aguirre, its first designer. The Federation

Aeronautique Internationale (FAI) Aresti Aerobatic Catalog, version 2003-1 was used as list of

reference maneuvers in this study.

4.1 Aresti Notation

Before exploring the details of maneuver identification, a quick description of Aresti's notation

of aerobatic maneuvers is probably necessary. This notation consists of a graphical represen

tation of the trajectory of the center of gravity of the airplane, usually in a vertical plane that

contains it (except for turns), with rolls superimposed on the trajectory, as illustrated in table 4.

A few more rules are useful to understand this notation:

Maneuvers start and finish in level flight (horizontal line).

Entry in the maneuver is represented by a dot while its exit is represented by a cross-line.

Lines can only be inclined by a multiple of 45° from the horizontal line.

Legs flown with positive angle of attack are represented with a solid line while a dashed

line represents portions of the flight where the angle of attack is negative.

Angles will replace circular arcs of less than 180° to make the visualization simpler.

Some maneuvers (turns and rolling turns) consist in out of the plane motion that requires

switching the representation from the vertical to a horizontal plane.

12

Figure Repre;

Loop (

9—rr
Turn

r

Roll •

I —

Immelmann

*

Climb .

2

Dive

Half Cuban /

^ y

^~~\
Goldfish y

sentation

0,
}

\ 1

")

/ '

'
S"—-s.

/ ^ \

' J

y^\ VJ

Description (leg by leg)

Pull 360°

Turn 180° at constant altitude

Roll 360° at constant altitude

Pull 180°
Roll 180°

Pull to 45° pitch angle
Maintain pitch angle
Push back to level flight

Push to vertical descent
Maintain vertical flight path
Pull back to level flight

Pull 225°
Maintain pitch angle
Roll 180°
Maintain pitch angle
Pull back to level flight
Pull to 45° pitch
Maintain pitch angle
Roll 180°
Maintain pitch angle
Pull 270° to 45° pitch
Maintain pitch angle
Push back to level flight

Table 4: Aresti representation of simple maneuvers

13

4.2 Maneuver Representation

Maneuvers (analogically referred to as "words") are combinations of legs ("letters") that are

characterized by several things:

• Regime of the leg, one of the 8 basic regimes (see table 1)

• Length of the leg flown, measured in terms of a parameter relevant to the given regime:

- horizontal length for Level Flight

- altitude change for Lines (except horizontal) and Tailslides

- pitch angle change for Loops

- heading change for Turns

• Roll status: whether a roll is flown during the leg (and its length)

• Inverted status: whether the status was flown with positive or negative load factor

Changes in flight regime throughout the flight are detected by gathering consecutive

data points that share a common dominant regime, and give a decomposition of the flight into

a sequence of legs, forming the "sentence" that describes the flight. Legs which have a small

parameter change are removed to get rid of the transient regimes. Level Flight legs with no rolls

and that are at least 100ft long are used as separations that allow breaking the sequence of legs

into several maneuvers, analogically, spaces that allow separating words in a sentence.

14

4.3 Error Correction

Each flown maneuver is then compared to each of the reverence maneuvers to know which is

the closest one, and identify it, to give it a name and so on. Possible errors in the realization

of a maneuver or data treatment are considered to allow better recognition and matching of the

maneuvers. Errors considered are described here:

Leg alteration: Measurement of legs' length is not perfect and it is possible that the

distance measured does not match the reference distance. To account for that, an error

of 20° in a loop's length has a small impact on recognition, and bigger errors are also

allowed, but have higher cost in terms of proximity to the reference maneuver.

Leg addition: It is possible that an additional leg is seen during the maneuver, the most

obvious example being a loop with little hesitation that lead to the addition of a line in the

middle of two parts of the same loop.

Leg suppression: A leg in a maneuver could not be seen when trying to match a maneuver

to its reference version, for example a line between two sections of a loop could be too

short to be seen by the algorithm, resulting in a continuous loop leg instead of 2 loop legs

separated by a line leg.

Leg replacement: In case a regime is flown inadequately from the algorithm standpoint,

it is important to consider the possibility of replacing a leg with a slightly different one, for

example the angle of a line could appear to be different from the reference one, especially

vertical lines could be seen diagonal because of the offset between actual criterion (based

on flight path) and the one used here (based on pitch angle).

Each error has a cost in terms of proximity to the reference maneuvers, which are given

by table 5.

Error
Leg alteration
Leg addition

Leg suppression
Leg replacement

Gravity
Variable
Moderate
Important
Important

Cost
d(Ap)

20 + d (Ap)
30+ d (Ap)

30

Table 5: Errors considered and associated distance

A function of the error in parameter change is considered in most of these distance

definitions since suppressing a 45° loop should not have the same impact on recognition as

15

suppressing a 180° loop. Similarly, when adding a line in the middle of a loop, a 50ft line should

not have the same impact as a 400ft one. This function is described by equation 2, plotted in

figure 2. and responds to the following criteria:

• d (Ap) « 0 when Ap < 10

• d (Ap) = 20 when Ap = 20 (corresponds to a small error)

• d (Ap) « 2Ap when Ap > 30

d (Ap) = 2 (1 - e" l n (2) x (^) J x Ap (2)

60 -

40

20

»

i i

Distance
2x

r i i i

yy
S/

y /
y /

•* /

s /
y, j i

^ / J^ /

' / y /
•s /

/
s* /

/

y y ^^
i — _ » _ — i i I . I

' S -S

-

-

i

5 10 15 20 25 30 35

Parameter chanae difference

Figure 2: Cost of errors in parameter change

4.4 Distance Measurement

To determine which reference maneuver is the closest to the one that was flown, one needs the

distance between the flown maneuver and each of the reference. The distance between two

maneuvers is determined from errors, to go from the flown maneuver to the reference we are

comparing it to. The sum of the cost of each error (defined in table 5) to go from the reference

maneuver to the flown one gives a distance that is used to determine whether the maneuver can

be matched to the reference.

16

Figure 3: Accounting for errors when identifying maneuver

Determination of the errors path to go from a maneuver to another has no direct method,

and only browsing all possible paths starting at the reference maneuver to check when the flown

maneuver is attained has been found possible. This gives particularly good results if the paths

starting at each reference maneuver are kept in memory between two runs of the recognition

algorithm, in some sort of a map, since the mapping is a very time-consuming process, especially

when mapping around hundreds of reference maneuvers. However for memory reasons the

length of explored paths has to be limited to a small value, as the size of the map increases

exponentially with the length of explored paths.

This yields a problem in terms of number of errors that can be considered. A good

solution to allow slightly longer paths, which has been adopted in this study, is to generate small

maps around each reference maneuver once and for all, which can take some time but reasonable

memory, then, when processing a maneuver, map the region around the maneuver to identify,

which takes little time (there is only one region to map), and check for common points between

this region and each initial map. This method is schematically represented in figure 3, and can

be summarized as follows:

Memorize maps around each reference maneuvers.

Generate a map around the flown maneuver.

Look for common points, and sum the distances to get flown-to-reference distance.

17

4.5 Identification

After comparison of the flown maneuver with each of the reference maneuvers, a decision as to

which one is the best match has to be done. For this study, the choice algorithm is very simple:

the reference that shows shortest distance with the flown maneuver is selected. Other criteria are

of course possible, especially if there is a prior knowledge of the flight program, as it would be

the case when judging aerobatics, and this would probably lead to a different distance definitions,

with more detailed error scale, and a precise cost for each error that would match International

Aerobatics Club's (IAC) judging criteria.

Another possible method, if there is only a partial knowledge of the flown program is

to weigh the reference maneuvers with the probability of this maneuver being in the program.

For instance, Half Cubans are very common in demonstration aerobatics and would be weighed

more than Goldfishes, which are more rarely seen. For example a badly-flown Half Cuban which

looks like the one in figure 4 could be considered a badly-flown Reverse Goldfish (the maneuver

obtained by flying a goldfish's legs backwards, represented in figure 4), the Half Cuban could

still be recognized over the Goldfish with this weighing process.

Figure 4: Identification example: badly flown cuban

18

5 TESTS AND RESULTS

The developed algorithm was tested as a post processing algorithm on two test sequences that

were flown on X-Plane Flight Simulator for data acquisition. The regime recognition algorithm,

being composed of filters, can be used for real time regime recognition.

5.1 Data Acquisition

The two flight tests were flown by Dr. Anderson and Mikhael Ponso on X-Plane Flight Simulator,

and the data acquisition was performed using a Simulink model that reads data packets from X-

Plane in real time. This model was developed by Embry-Riddle Aeronautical University's Flight

Research Center for research on Helicopter Health and Usage Monitoring Systems, and used for

similar purposes in this research program. It is described in appendix A.

5.2 Data Treatment

The Flight Regime Recognition algorithm was implemented using Simulink to enable real time

identification and is described by appendix B. The Maneuver Identification algorithm was imple

mented in Matlab, treating data output by the Simulink model. The whole process is summarized

in figure 5.

5.3 First Sequence

The first test sequence, represented in aresti notation in figure 6, was designed for testing and

tuning of both algorithm, and includes a long leg of most regimes, as well as simple maneuvers

that allow simple recognition. It consists in the following maneuvers: Climb, Vertical descent,

Half cuban eight, Full loop (360°), 180° turn, Full roll (360°) in level flight. It was flown twice

by Dr. Anderson at the beginning of the work on this study. Results for the second run of this

flight are shown in great details here, they are very similar to those obtained with the first set of

data.

19

(States vector)

ZTransition "7
Matrtx J /

c

c Regimes Wctor D r
Aegs detect ion/

("Legs sequence^

/Maneuver c u t /

y

(Maneuvers A
description y

D-^ldenSonyA K M a r e u v e f s " B m e s)

Figure 5: Data treatment algorithm

180°

4 h

H i

Figure 6: First test sequence in Aresti notation

20

Tuning of the tolerances as well as the recognition algorithm was mostly done on this se

quence, for both runs, even though , and the results in terms of states and regimes are conclusive

for both regime recognition and maneuver identification.

5.3.1 States Observed

First step of the process is the determination of states throughout the flight, and results are given

in figures 24 through 29 in appendix C. Under this form, they do not give much information, but

they allow detection of problems on states determination as well as problems that could occur

later, in regimes recognition and legs detection.

The states are the result of tuning the model's tolerances on each parameter and deter

mination of these tolerances is a process that requires prior knowledge of the flight: by knowing

what leg was flown at a given time, we know which states should be present, and therefore

we can tune the tolerance so the proper states are active. Of course the tolerances are constant

throughout the flight so this tuning process is done only once, and then checked for the whole

flight. Automatic tuning could be possible provided a given sequence of legs that the pilot would

fly prior to the actual program to adapt the tolerances to his aircraft and his way of flying. The

Flight Regimes were computed throughout the flight using the transition matrix and are shown

in figures 7 to 12. They seem to match the intended regimes for most of the flight, and transitions

between regimes appear to be measured properly.

21

5.3.2 Maneuvers' Description

The regimes evolutions are of great importance, and will determine how the maneuvers can be

recognized. In figures 7 to 12, the maneuvers have already been decomposed into legs, which

are used for readability of the figures, and given in table 6.

Length
62°
433 ft
44°
211ft
87°
292 ft
93°
2148 ft
222°
462 ft
45°
800 ft
349°
425 ft
321°
595 ft

Regime
loop
climb
loop (inverted)
level flight
loop
vertical descent
loop
level flight
loop
descent
loop
level flight
loop
level flight
turn
level flight
level flight

Flags

inverted
inverted

half roll from inverted

half roll to inverted

Table 6: Sequence of legs detected for the first sequence

This long sequence of legs has been decomposed into maneuvers using the 100 ft long

level flight criteria, parsed through the maneuver identification algorithm and the results are

detailed in the next pages.

22

Climb:

Aresti number 1.3.1

Aresti notation
Description from flight data 62° in a loop

433 ft climb
44° in a loop (inverted)

Identified as 1.3.1, at distance 20

-Level

.Turn

-Climb

-Descent

V-climb

-V-descent

Loop

Tailslide

-Roll

.Inverted

Figure 7: Regimes during climb

This maneuver demonstrates the capability of recognizing the Climb regime and short

Loop legs. The maneuver identification algorithm has no problem identifying it as the sequence

of legs respects the catalog's description of the maneuver.

23

Dive:

Aresti number 1.6.3

Aresti notation ' I
Description from flight data 87° in a loop (inverted)

292 ft vertical descent
93° in a loop

Identified as 1.6.1, at distance 0

-Level

.Turn

-Climb

. Descent

V-ciimb

- V-descerrt

-Loop

Tailslide

-Roil

- Inverted

18 20 22 24 26 30 32

Figure 8: Regimes during vertical descent

This maneuver shows the capability of recognition of the Vertical descent regime as well

as measurement of the length of Loop legs. Once again, the maneuver identification program

gives good results as the legs sequence match what they are supposed to.

24

Half Cuban:

Aresti number 8.42.1

-y Aresti notation *~
Description from flight data 222° in a loop

462 ft descent with half roll from inverted
45° in a loop

Identified as 8.42.1, at distance 0

Loop

-0.5

-Level

.Turn

-Climb

-Descent

V-climb

. V-descent

-Loop

Tailslide

•Roll

-Inverted

35 40 45 50

Figure 9: Regimes during half cuban

The half cuban was mostly used to check the behavior of the legs detection algorithm in

presence of a roll, which is not a regime by itself, but adds on to a given regime. In this case,

the performance was very good and the detected maneuver matched the description of a cuban,

resulting in a good identification.

25

Loop:

Aresti number 7.5.1

Aresti notation •
Description from flight data 349° in a loop

Identified as 7.5.1, at distance 1

-0.5

_L.

— I

/

Loop

_ii J

— Level
-_Turn

— Climb

— Descent

V-chmb

.--V-descent

— Loop

Tailslide

— Roll

— Inverted

80 65 70

Figure 10: Regimes during loop

Another very simple maneuver, which demonstrates capability of identification of a long

loop leg, and acceptance of slight errors in length for identification.

26

Turn:

Aresti number 2.2.1

D
Aresti notation '

Description from flight data 321 ° in a turn
Identified as 2,1.1, at distance 77 (360° turn instead of

180°)

.Level

.Turn

-Climb

-Descent

V-chmb

-V-descent

-Loop

Tailslide

-Roll

-Inverted

Figure 11: Regimes during turn

This maneuver suffers from a flight error, and the identification algorithm performed

very well in detecting this error, showing the maneuver flown doesn't match the one that was

intended, since the heading change is too important, and this shows as well in the raw flight data.

The prolongation of the Turn leg when no new regime is dominant is normal and this maneuver

shows in a very good way the behavior of algorithm when no regime is really dominant. This

may be a problem in terms of Flight Regime Recognition, but as far as leg recognition, it is the

easiest way to do it: the algorithm should be able to describe all legs.

27

Roll:

Aresti number 1.1.1

4- H
Aresti notation

Description from flight data 595 ft level flight with half roll to inverted
Identified as 1.2.1, at distance 0

1.5

0.5

-0.5

Level
- I — J — _ J 1 _ -L. L _ _ _ _ i _

-Level

-Turn

-Climb

- Descent

V-climb

- V-descent

Loop

Tailslide

-Roll

-Inverted

93 94 95 96 97 98 99 100

Figure 12: Regimes during roll

This maneuver was flown too close to the ground and it shows a little error in flight

since the flight simulator had trouble when the wings, touched the ground, and started to send

erroneous data. The level flight with roll is however correctly identified except for the length of

the roll, which really is 270° instead of 360°.

28

5.4 Second Sequence

Once the algorithms were set for the first sequence, which consisted essentially of simple maneu

vers, a second sequence was necessary to test them and see how they behave on more complex

maneuvers. The Flight Regime Recognition algorithm seemed to already have good results but

several cases still needed testing for the maneuver identification program, including roll on en

ter, exit or top of a loop, inverted exit and entry in a maneuver, level flight in the middle of a

maneuver, and so on,

A second flight sequence was then designed to address many of those cases and check

whether the algorithm still gave good results. This sequence, depicted in figure 13, was flown 1>y

Mikhael Ponso. The FRR algorithm performed very well on this second sequence, provided that

the tolerances were reviewed to accommodate M. Ponso's flying. The maneuver recognition, on

the other hand, required modifications to take specific configurations into account, in particular

the rolls-loops combinations. This has been performed by changing details in the way legs are

detected. Another problem appears in maneuver separation: maneuvers that use level flight as

one of their legs are separated into several maneuvers. The length of level flight used to separate

maneuvers seems to be too short, but it was also seen that a longer distance would not enable

successful separation of maneuvers for the first sequence.

^ — — •

Figure 13: Second test sequence in Aresti notation

29

^

Vertical S:

Aresti number 7.11.

Aresti notation 4- J
Description from flight data 181 ° in a loop

76 ft in level flight (inverted)
76 ft in level flight (inverted)
185° in a loop (inverted)

Identified as 7.1.1 + 7.1.2 (seen as two maneuvers)

1.5-i
- Level

.Turn

-Climb

-Descent

V-climb

V-descent

Loop

Tailslide

-Roll

-Inverted

Figure 14: Regimes during vertical S

This maneuver combines errors from flight and treatment, as it should not have a long

level flight leg in the middle, which can be seen in the raw flight data, thus results from the way it

was flown. This level flight is detected by the legs detection process, and mistakenly considered

as a maneuver separation by the maneuver identification algorithm.

30

Square loop:

Aresti number 7.8.1

Aresti notation
Description from flight data 153° in a loop

81 ft in level flight (inverted)
333 ft in level flight with half roll from
inverted
76° in a loop (inverted)
92 ft vertical descent (inverted)
87° in a loop (inverted)
342 ft in level flight (inverted)

Identified as 7.1.1 + 1.1.4 + 1.7.3 (seen as three
maneuvers, one of which is badly flown)

-Level

.Turn

-Climb

-Descent

V-chmb

- V-descent

.Loop

Tailslide

• Rolf

. Inverted

-0.5

Figure 15: Regimes during square loop

This maneuver has a small error from flight, with no vertical line marked on the first

leg, resulting in a 180° loop seen instead of a 90° loop followed by a vertical climb an another

90° loop. But it mostly has a problem in the separation of maneuvers, which creates three

maneuvers out of a single one because of the level flight leg.

31

Bow-tie:

Aresti number 1.33.2

. > Aresti notation
Description from flight data 342 ft in level flight (inverted)

34° in a loop (inverted)
705 ft climb with half roll from inverted
103° in a loop (inverted)
362 ft vertical descent (inverted) with half
roll
122° in a loop
359 ft climb
38° in a loop (inverted)

Identified as 1.33.2, at distance 68

i .5r

-Level

-Turn

-Climb

-Descent

V-cIimb

- V-descent

-Loop

Tailslide

-Roll

-Inverted

Figure 16: Regimes during bow-tie

This maneuver was mostly designed for demonstration of inverted leg between maneu

vers, and this is correctly detected. The bow-tie is an example of a long maneuver, in terms of

number of legs, and this allowed testing the mapping algorithm's computation time on a long

maneuver, which gave good results even though the process is time consuming.

32

Reverse Half Cuban:

Aresti number 8.47.3

Aresti notation
Description from flight data 188° in a loop

372 ft climb
31° in a loop (inverted)

Identified as 8.47.3, at distance 108

1.5r

-0.5

-Level

.Turn

-Climb

-Descent

V-chmb

- V-descent

-Loop

Tailslide

-Roll

- Inverted

95 100 105 110

Figure 17: Regimes during reverse half cuban

This maneuver was included in the flight sequence for testing of the algorithm when

confronted to a half roll at the beginning of a loop, and the results were initially not good, and

showed that a change in the algorithm was necessary. After changing the way the algorithm

treated roll legs between two regimes (as there is no active regime during this roll), the identifi

cation gave good results.

33

Avalanche (Loop with Roll on top):

Aresti number 7.5.1

£> Aresti notation
Description from flight data 147° in a loop with roll

26 ft in level flight (inverted)
158° in a loop

Identified as 7.5.1, at distance 137

1.5 r

-0.5

-Level

.Turn

-Climb

-Descent

V-cfirob

- V-descent

-Loop

Tailslide

-Roll

-Inverted

115 120 125 130

Figure 18; Regimes during avalanche (loop with roll on top)

This is another example of maneuver that combines rolls with loops, and the algorithm

had trouble identifying it before the fix mentioned for the previous maneuver was performed.

The level flight leg is present in the flight data and not a result of an error in the flight regimes

recognition algorithm. The maneuver recognition algorithm identified this maneuver properly

even though the legs detected show an error from what woud be expected for this maneuver.

34

Immelmann:

Aresti number 7.2.1

Aresti notation
Description from flight data 150° in a loop with half roll

Identified as 7.2.1, at distance 56

A
Loop

-Level

-Turn

-Climb

-Descent

V-climb

-V-descent

. Loop

Tailslide

• Roll

-Inverted

135 140 145

Figure 19: Regimes during Immelmann

This maneuver is the third example of loops and rolls combination, but this time the fix

did not appear to be necessary as the roll happens at the end of the loop. However, before the fix,

a Split S, which is the maneuver obtained by rolling to 180° of bank before entering a 180° loop

would probably have been identified as an Immelmann.

The most important problem to this time, which was seen on the first two maneuvers of

this sequence, is the separation of maneuvers, which is considered once and for all, and possible

errors in maneuver separation is not taken into account by the maneuver identification algorithm.

No solution that would not be prohibitively time consuming has been found in this study.

35

6 CONCLUSION

This study used a filter approach to develop a Flight Regime Recognition algorithm, which was

proven to give good results and address the problem of real time FRR, since it processes the

data straight from flight recorder in a continuous, time step by time step, way. In addition, the

maneuvers flown implied complex regimes and transitions to which the flight regime recognition

program responded with a good behavior.

Spins and snap rolls were not considered in this study in order to focus on feasibility

rather than completeness. The tailslide regime was considered but not tested since all tests

conducted were flown in a simulator, which brings uncertainties in terms of its behavior ih a

stall and a tailslide. Implementing and testing of these regimes would be necessary for future

development and large scale use of this system.

No specific interface was developed for real time treatment but all it would need is

the Simulink model to be implemented in the data acquisition solution. In the case of this

study, it would be achieved by combining the data acquisition and the flight regime recognition

models, instead of using a recording of output data from the first to feed the second one for

post-processing.

This Flight Regime Recognition system shows very good results for a moderate cost,

since it only requires the installation of an Inertial Measurement Unit and recording of its data.

However, its approach was specifically adapted for aerobatic maneuvers and some additional

data may be required for flight load analysis.

The legs identification also provided good results on both sequences and the most im

portant source of problems is separation of the whole flight into maneuvers, which prevented

correct identification in the case of level flight used as a leg of a maneuver. A priori knowledge

of the sequence flown could allow better separation of the flight into maneuvers and enhance the

identification of errors, which most obvious application is aerobatics rating.

The tailslides, hammerheads, rolling turns and stall turns were left out of the catalog

because they were not part of the test sequences, for simplicity and because the combination

36

of roll and turn regimes was not very well modeled. Also, due to the way rolls are modeled

superimposed on a regime for leg identification, hesitation rolls and rolling turns are not modeled

properly and further development of the model should be done to allow consideration of these

scenarios.

Aerobatic maneuvers are of a complex nature and capability of both regimes recognition

and maneuver identification has been achieved in this study, with very good results for the first

one, which would need to be completed by the addition of spins and snap rolls, and promising

results in the second, which would need further development and testing to achieve completeness

and robustness.

37

REFERENCES

[1] David Kim and Laure Pechaud, Maneuver Recognition and Prediction or Empennage

Flight Loads of General Aviation Aircraft. Embry-Riddle Aeronautical University, ©ay-

tona Beach, FL, AIAA 2001-5273.

[2] Ahmet Murat Dere, Flight Regime Recognition Analysis for the Army UH-60A IMDS Us

age, Thesis Report, Naval Postgraduate School, Monterey, CA, 2006.

[3] S. S. Tang and L. J. O'Brien, A Novel Method for Fatigue Life Monitoring of Non-Airframe

Components, Structural Integrity Associates, Infometrics, Inc. AIAA 1991-1088.

[4] Rachel Rajnicek, Application ofKalmann Filtering to Real Time Flight Regime Recognition

Algorithms in a Helicopter Health and Usage Monitoring System. Thesis Report, Embry-

Riddle Aeronautical University, Daytona Beach, FL, 2008.

[5] Andrew Hess, William Hardman, Harrison Chin and John Gill, The US Navy's Helicopter

Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Di

agnostics and Prognostics, Life Usage Monitoring, and Damage Tolerance; Techniques,

Methodologies, and Experiences, US Naval Air Warfare Center, BFGoodrich Aerospace,

1999.

[6] K.F. Fraser, General Requirements and Techniques for Component Fatigue Life Substanti

ation in Australian Service Helicopters, Australian Department of Defense, 1991.

[7] John Peter Jesan, The Neural Approach to Pattern Recognition, Ubiquity, Volume 5, Is

sue 7, April 14-20, 2004.

38

[8] Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Second Edition,

2003, ISBN 0-12-685875-6

[9] International Aerobatics Club (IAC), Official Contests Rules, 2009.

[10] Federation Aeronautique Internationale (FAI) Aresti Aerobatic Catalog, Version 2003-1,

2002.

39

APPENDIX

A Data Acquisition Model

The data acquisition model that was used in this study uses a custom block to read data packets

sent in real time by X-Plane FUght Simulator, version 8.40. X-Plane was setup to send UDP

packets to the receiving computer containing the following information:

Data index
01
02
03
05
07
14
15
16
18
19
23
33
35
40
62

Name
Elapsed Time
Speed, Vertical Speed
Mach, G-load
Atmosphere: Ambiant
Joystick: Ail/Elv/Rud
Angular Accelerations
Angular Velocities
Pitch, Roll, Heading
Lat, Lon, Alt
Loc, distance Traveled
Throttle Setting
Engine Torque
Prop RPM
MP
Landing Gear Vertical Force

Table 7: X Plane data export settings

The Simulink model reads data packets in real time and creates a vector of flight data,

which is exported to Matlab workspace for post processing.

40

':fj '..<:? t*r:0':'

Passe

S m A W Pa«
1 s«*«c

OOP
Receive
Binary ifc.r™fi

Re«««

;'»dst !'-.

* ''/*.*i» '.:***.:'•;; :•

**::.>: h:r

I Ar) ! i

::?,?(. ' ; * *]

: ••.;!!?! - . . : " •

:.? L.'.'J", *f>-f-4

:. !.:>»'? . . -V:

• I B

•itltS

• t o1

•to 1

| -to 1

: " D

•*u

Hg

. i

: T t t

: >?tW

•v } «s

» jr*es

: " "i

1 " '

; • '

_ " x * &

> S&SS

J- W S

!

:-

:"

- H ^

»

Display

;$v tats

To ¥tforkspaoe

Binary to floating Point
Conversion

Figure 20- Data acquisition model

41

B Flight Regime Recognition Model

The Flight Regime Recognition being mostly composed of filters was modeled in Simulink to

enable real time regime recognition, even though the current model uses recorded data. The

Simulink model, depicted in figure 21. recreates flight data and uses filters to create the states

vector, and multiplies it by the transition matrix / / to get the vector of flight regimes.

i1^
KJ

fe

to

to

lb

w

-J
r

Nz

_J
r~

theta

_J
r~

TAS

-J
r~

P

r
j

q

j
c

r

J
c~

t

h,

fc

x

P

h i

*
1

fc,
•"

k,

.

Y

simoirt
time

states

simoul
States

aqjSWW

To Regimes

To States

regimes

sim out
Regimes

Figure 21: Flight Regime Recognition model - top level

The central block consists of filters applied to each parameter, as shown in figure 22,

each filter being the implementation of equation 1, depicted in figure 23, for "close to" states, its

complement to 1 for "far from" states, and specific equations for states (TAS < 0} and (Nz < 0).

The "To regimes" block multiplies the states vector with the transition matrix H with upper and

lower bounds set to 0 and 1 on probability of being m given regime.

42

Nz

pitch

TAS

c±>
p

G >

CE>

Constant

-f* In Out —

close to +/-1g

Out

far from Og

Out

Nz<0

Out

close to 46

In Out

close to 90

Out

close to -46

Out

close to -90

In Out

TAS<0

In Out

p far from 0

In Out

q far from 0

In Out

r far from 0

states

Vector
Concat

close to 0

Figure 22: States determination block

Math
Funetion2

Figure 23: Implementation of equation 1 in Simulink

43

C States Observed During First Sequence

to r,

too

60 80 100

Figure 24: Load factor and associated states throughout sequence 1

100

-100
0

1.5

1

0.5

0

-0.5
0

20

20

40 60

i i,„ i 1 ,t i

40 60 80 100

Figure 25: Pitch angle and associated states throughout sequence 1

200

-200

1.5

1

0.5

0

-0.5

20

i i

•i i

40 60 80

w f » N I

• Wings level
TXT—T—'" I.

40 60 80

100

I u u I

I I

•I II

100

Figure 26: Bank angle and associated state throughout sequence 1

100r,

-100
0

1.5r

ill

0.5

0

-0.5
0

20

_i_t_

20

40 60

notO

40 60

80 100

J _ a.
80 100

Figure 27: Pitch rate and associated state throughout sequence 1

45

200

0

•200

i i i
i i i
i i i
i i , i

i i

i t i
"i i i
i i t i i

t i i
t i i
i i i

rr-ir-^
i i i i
i i) •
i i i i i

i
i
i

i

i
i
i.

0 20 40 60 80 100

15

1

05

0

-0 5
20

not 0

J_j JL i_

40 60 80 100

Figure 28 Roll rate and associated state throughout sequence 1

100

Figure 29 Yaw rate and associated state throughout sequence 1

46

D Source Code

The Flight Regime Recognition algorithm initialization as well as the Maneuvers Identification

algorithm were implemented using Matlab, and the source code is given below.

D.l Main Program (Import script)

The main program sets the tolerances and input data into the Simulink FRR model before running

it, and then runs the maneuver identification algorithm on the model's output. It also generates

graphs and outputs the maneuvers description in Matlab prompt.

'<• (funera l l 11 £ h I d a t a i n t e r p r e t a t i o n program p r e a m b l e

clc .
clear all ,
close all ,
warning (* off . * a 1 i *) ,

' tV I 0 p 0 ! s

' t r i l e i t > i i u i ! t i i i g the M i g h t <jat<J
wi th

fc \ at t a b i c CSV .Data Make c a t t l e
c sv f i l e = * r u n ! csv ' ,
load pons©2 ,

' . i \ c J lot nam.nsr o u t p u t g r a p h s

s e q u e n c e = l ,

' , Pi h>t t e l l s what I O K ' I . I I K C \ to use t c tit t e n t o p i . o n s \ n d e r s o n
', Ponso and an \ t h i n y c K e tot d e f a u l t t n t i n t i n a l) t v l e u i u c s)

pi l o t = " Anderson * .

c a t a l o g f i l c = " c a t a l o g ' , '* f i l e c o n t a i n i n g u u t o j in p l a i n t e \ i ' i n p u t i
p r e l o a d e d = 1 , '> t e l K w e t h e r the v it a log mat t i l e c o n t a i n - , tip to d a t e c a t a l o g
<t set to It to I f t m t e a d t n e itom the u i t i l o v t i l e

r e c o g n i u o n = 0 '< I I I . U H ' I I . U rec nfi ni t ton (torn s e t a log Net to 0 it what iv

•V i t t t e r c - t t t t t t i> o n l) the maneuver s de M. I I pl i on not i t s c a t a l o g t e f e t e n t e
t 1 be re <. o e tu t ion p t o c e s s he in a \ c r \ t une consuming s e t t i n g t h i s to it w i l l

' , N jve a lo t <>i t ime it \ »u don I t ietd the ma t u n vets i i K r u u c

V< \fode i p a r a m e t e r s

'r Ciaitis {or c o t n p a t a t o t s In > 2 t ' t o l e t ane t. 4 to g ive 0 * when w i t h i n t o l e r a n c e

K N z = i o g (2) / 0 5*4 . *« t o l e r a n c e <>t o S g on V - \ a l u e

Kt=log (2) / l 0*4 . '< l o l t u n u "t It) deg on t l u t a - + ' 4^
K t 2 = t o g { 2) / 2 0 ~ 4 . '< t o h t a t i c e ot 2D de a on t I u t a - - (lHl
Kp=Jog(2)/4(T4 . '« t o h t a t i c e ot 40 d e s ' s e c on p -t>
i f (s t r c m p (p i l o t . ' A n d e r s o n '))

Can he c i t h c t a m t i l e or a mar I tic-

tot c o n s i d e r a t i o n ot (he mat f i l e

47

file:///nderson
file:///fode

Kq=Iog(2)/8~4 . <V to l e rance ol 8 deg/see on q~=0
Kr=log(2)/5"4 , V to le rance ol 1 deg/sec on r =0

e l s e i f (strcmpCpilot 'Ponso')}
Kq=log(2)/S"4 , 9- t o l e rance ot S deg/sec on t f=0
Kr=log(2)/10"4 , <„ to le rance ol 10 deg/sec on r = 0

else
Kq=log(2)/5"4 , % t o l e rance ol 1 deg / s e t on q~=0
Kr=log(2)/5"4 , 9 t o l e rance ot <5 deg / se t on i "=0

end
Kb=leg(2)/15*4 , » to le rance of H deg on ph i=+ / - i80 or 0

9 T rans i t i on matrix
* N?=l N?-=0 XivO +4'5 +90 -45 90 L<0 p >0 q̂ >0 r>0 bank

:«[i
0
0
0
0
0
0
0
0
0

] ,

0
0
0
0

_ 4
- 4

0
0
0
0

0
0
0
0
0
0
0
0
0
1

- 1
- 1

1
0
0
0
0
0
0
0

- 1
- 1

0
0
1
0
0
0
0
0

- 1
- 1

0
1
0
0
0
0
0
0

- 1
- 1

0
0
0
1
0
0
0
0

_ l

- 1
0
0
0
0

- 1
1
0
0

- 7
_ 1

0
0
0
0

_ 7

0
1
0

- 7
0

- 7
- 7
- 7
- 7

1
0
0
0

- 5
1
0
0
0
0

- 5
0
0
0

0
_ I

0
0
0
0
0
0
0
0

9c Leve l
* Turn
9c Cl imb
9c D e s t c n t
"(V - c h r a b
9 V d e s c e n t
"e Loop
9 T a i l s l i d e
9 R o l l i n g
f r I n v e r t e d

9r mintmum value to consider a s t a te ac t ive
mil l .act iv i ty = 0 5

9(i u t o i t frequency for regime change
cutoff = [5 * o n e s (l , 8) 10 10] ,

9M Catalog and Fl ight Data

if (recognit ton==l)
9 load t a t a l o g
[c a t a l o g , extendedcatalog]=loadcatalog (cata logf i l e , preloaded) ,

e lse
extendedcatalog = [] ,

end

9c load f l i gh t data
if (- i s e m p t y (c s v f j l e))

da ta=csvread{csv f i l e) ,
e lse

data=CSV.Data ,
end
duration = data{ length(data(. 1)) , 1) ,

9t L x t r a t l i n t e r e s t i n g data Ironrt f l ight re tord
9 The ind ices are valid lor X plane s imula tor with data a q u i s i t i o n model
9 from 1 t igh t research t cn t e t {HWTL s imu la to r)
ume=data(,1) ,
Nz=data(.22) ,
alt = data(,12) ,
theta = data(,13) ,

48

bank=data(: ,14) ;
head=da ta (: ,15) ;
TAS=data(: ,2) ;
p=data (:
q=data (;
r=data (:

,26) ;
,25) ;
-27) ;

r a t e . o f „ t u r n = r . * c o s (b a n k * p i / 1 8 0) + q . * s i n (b a n k * p i / 1 8 0) ;

f'£'c Data process ing
f p r i n t f (' P r o c e s s i n g „ d a t a \ n ') ;
t i c ;
sim(' p rocess ing ') ;

[legs , l e g s t i m e] = g e t f H g h t l e g s (a c t i v e , regime . a c t i v e . r o l l , a c t i v e . i n v , TAS, p ,
q, r a t e . o f . t u r n , aft , simtime) ;

[f l ight . f i i g h t t i m e] = getmaneuvers(legs , legst ime , extendedcata log , r e c o g n i t i o n
) .

toe ;

'¥* Output

n . f ig = l ;
9 graphs :
p lo t reg imes ;
plotmaneuvers ;
s ave f igures ;
c lose a l l ;

p rmtmaneuvers (f l i gh t) ;

D.2 Catalog Parsing (loadcatalog function)

This function parses a catalog file containing a list of reference maneuvers specifically formated

and generates variants of the maneuvers described. For example, following Aresti catalog's

numbering, the catalog file only requires family X.X.l maneuvers, and the function generates

X.X.2, X.X.3 and X.X.4 from the first maneuver. In most cases, when the catalog has not

changed since previous execution, the parsing is not necessary, and the catalog can be loaded

from a mat file.

funct ion [ca ta log , ex tendedca ta log]= loadca ta log (filename . preloaded)
<7f loads the ca ta log data in f i le filename tor , mat f i le if p re loaded)
% and genera tes v a r i a n t s of given maneuvers

i f (p r e l o a d e d)
load ca ta log ;

e lse

49

cata log . f i l e=fopen(f i l ename , "rt") ;
i=0 ;
while C f e o f { c a t a l o g . f i l e))

i=i+l ;
c a t a l o g d a t a { i , l } = f g e t l (c a t a l o g . f i l e) ;

end
f c l o s e (c a t a l o g . f i l e) ;

'.* skip the comments and emptj l ines
i=l ;
skipped=false ;
while {"skipped)

if {strcmp(catalogdata{ i } , * '))
i= i+ l ;

e l s e i f (c a t a l o g d a t a { i } (!) = = ' % ")
t=i+l ;

else
skipped=true ;

end
end
9 I s o l a t e each maneuver and i ts parameters
j=0 .
n.maneuvers=0 ;
while (i< iength(cat alogdata (: , !)))

£-f read regime sequence
t e x t = c a t a l o g d a t a { i } ;
j=i ;
k=0 .
maneuver = [] ;
while {j<=length(t e x t))

li skip whi tespaees
while (text (j)=='„*)

j=j+l ;
end
% read regime
regitne=0 ;
read=false ;
while (j<=length(t e x t) && "read)

i f (t e x t (j) - = ' , ')
regjme=regime*lG+text(j) 48 ;

e lse
read=true ;

end
j=j+l ;

end
k=k+l ;
maneuver(k)=regime ;

end
9 Same maneuver down
maneuver.down=maneuver ;
for k = l:length(maneuver.down)

switch (maneuver.down(k))
case 3

maneuver_down(k)=4 ;

50

case 4
maneuver.down(k)=3 ;

case 5
maneuver.down(k)=6 ;

case 6
maneuver-down(k)=5 ;

end
end
Qr read paramchange sequence
i= i+ l ;
t e x t = c a t a l o g d a t a { i } ;
j = i ;
k=0 ;
paramchange=zeros(l , length (maneuver)) ;
while (j <=length (t e x t))

f/r skip whitCxSpaees
while (t e x t (j)==*„ ')

end
% read change
change=0 ;
r cad=fa l se ;
while (j<=Jength(t e x t) && "read)

i f (t e x t (j) " = \ -)
change=change*10+tex t (j) -48 ;

e lse
read=true ;

end
j= j+ l :

end
k=k+l ;
paramchange(k)=change ;

end
* read rol l elements sequence
i= i+ l ;
t e x t = c a t a l o g d a t a { i } ;
j= l :
k=0 ;
ro l l s=j te ros (1 , l eng th(maneuver)) ,
while (j <=Jengtb (t e x t))

'/c skip whttespaces
while (t e x t (j)==*„ ')

j= j+ l ;
end
9 read rol l
r o l l = 0 ;
read = fa l se ;
wh i l e (j<= leng th (t e x t) && " read)

i f (t e x t (j r = \ ')
r o l l = r o l l * 1 0 + t e x t (j) - 4 8 ;

e lse
read=true ;

end

J=j+1 :
end

51

k=k+l :
r o l l s (k) = r o l l ;

end
i= i+ l ;

f'< skip the comments and emptv l ines
sk ipped=fa l se ;
whi le ("sk ipped)

if (s t rcmp(c a t a l o g d a t a { i } , ' '))
i= i+l ;

e l s e i f (c a t a l o g d a t a { i } (1) = = * % ')
i= i+ l ;

else
skipped=true ;

end
end
9 read inver ted va r i an t s
while ("strcmpC c a t a l o g d a t a { i } , ' *))

name=ca ta logda ta{ i} :
i=i+l ;
t e x t = c a t a l o g d a t a { i } ;
j = l ;

k=0 ;
va r i an t = zeros (1 , length (maneuver)) ;
while (j<= lcng th (t e x t))

7e skip whitespaces
while (t e x t (j) = = ' _ ')

j= j+ l ;
end
9c read rol I
inver ted=0 ;
sign = l ;
read=fa lse ;
while (j<=length (t e x t) && " read)

i f (t e x t < j) - = \ ')
i f (t e x t (j) " = - -)

inve rt ed = in ve r t ed* 10+text (j)—48 ;
else

s ign=- l ,
end

else
read=true ;

end

end
k=k+l ;
va r i an t (k) = »nver ted*sign :

end
n.maneuvers = n.maneuvcrs + l ;
ca ta log{n.maneuvers . l}=name ;
ca ta log{n.maneuvers , 2}=maneuver ;
ca ta log{n.mancuvers , 3}=paramchange ;
ca ta log{n.mancuvers , 4}=ro l l s ;
ca ta log{n.maneuvcrs , 5 } = v a n a n t ;
9 Same maneuver inver ted
i n v . v a r i a n t = v a r i a n t ;

52

for k = l - i e n g t h (i n v . v a r i a n t)
s w i t c h (i n v . v a r i a n t (k))

case 0
i n v . v a r i a n t (k) = l ;

case 1
inv .va r i an i{k)=G ;

case 2
i n v . v a r i a n t (k) = 3 ;

case 3
i n v . v a r i a n t (k) = 2 ;

end
end
9 Change last d ig i t of name
name(end)=name(end) + l ;
n.maneuvers=n.maneuvers+l ;
ca ta log{n.maneuvers , l}=name ;
ca ta log{n.maneuvers , 2}=maneuver ;
cata log{n.maneuvers . 3}=paramchange ;
cata log{n.maneuvers , 4}=ro l l s ;
ca ta log{n.maneuvers , 5 } = i n v . v a r i a n t ;
if (~strcnip(name(I :3) , ' 1.1 ') && "strcmp(name(1) , '2 '))

9 Same maneuver down
downvar ian t=var ian t ;
for k = l : length (maneuver .down)

if (maneuver-down (k) ==7)
if (downvar i an t (k)==l)

downvariant (k)=0 ;
e l s e i f (downvariant (k)==0)

downvariant (k)=l ;
end

end
end
% Change last d ig i t of name
name(end)=name(end)+l ;
n_maneuvers=n.maneuvers + l ;
catalog{n_maneuvers , l}=name ;
catalog{n_maneuvers , 2}=maneuver.down ;
ca ta log {n.maneuvers , 3}=paramchange ;
cata log{n.maneuvers , 4}=ro l l s ;
ca ta log {n.maneuvers , 5}=downvariant ;
9- Same maneuver inse r t ed
inv-downvar iant = downvariant ;
for k = l : I e n g t h (i n v . d o w n v a r i a n t)

s w i t c h (i n v . d o w n v a r i a n t (k))
case 0

inv .downvar iant (k) = l ;
case 1

inv .downvar ian t (k)=0 ;
case 2

inv .downvar ian t (k)=3 ;
case 3

inv .downvar ian t (k)=2 ;
end

end
c4 Change last d ig i t of name

53

name (end)=name(end) + l ;
n.man eu vers=n.maneuvers+l
cata
cata
cata
cata
cata

end
t = l + l ;

og{n
og{«
og{n
og{n
og{n

.maneuvers ,

.maneuvers ,

.maneuvers ,

.maneuvers ,

.maneuvers ,

l}=name ;
2}=maneuver.down ,
3}=paramchange ;
4}=ro l l s ;
5} = inv.downvariant ;

end
<* skip the comments and empty t ines
skipped=false ;
while(" skipped && i<length (catalogdata))

if (strcmp(c a t a l o g d a t a { i } , * *))
t = i + l ;

e l s e i f (c a t a l o g d a t a { i } (l) = = ' % ')
i= i+ l ;

e lse
skipped=true ;

end
end

end

9c c r ea te a l t e r a t i o n s ot ca ta log maneuvers
for j = l : l e n g t h (c a t a l o g (: .1))

extendedcatalog{j ,1}= catalog-fj ,1} ;
e x t e n d e d c a t a l o g { j , 2 } = a l t e r m a n e u v e r (c a t a l o g (j , 2 : 5) . l , , r *)

end

end

D.3 Flight Decomposition into Legs (getflightlegs function)

This is the first step of the maneuver recognition, and uses IMU data as well as regimes evolution

from the Simulink FRR model.

function [l e g s , legst ime]= g e t f l i g h t l e g s (active.regime , a c t i v e . r o l l ,
act ive . inv , TAS, p, q, r, a l t , simtime)
9 Transforms regimes his tory into a sequence ot f l i gh t legs

9r i n i t i a l i s a t i o n
maneuver = [] ;
paramchange=[] ;
bankchange=[] ;
inverted = [] ;
startt ime =[] ;
newregime = l ; 9c suppose the recording s t a r t s s t r a i g h t and level
j=0 ;
9t en te r loop
for t = l: state (s imt ime) - l

54

regime=newregime ;
knowregime=0 ;

* get dominant regime
if (a c t i v e , re g i m e (t) >0)

newregime=act ive_regime(t) ;
knowregime=l ;

end

9 case of a ro l l
i f (a c t i v e . r o l l { t))

newregime=act ive . regime (t) + 10 ;
knowregime=l ;

end

'* get parameter change
change=0 ;
if (ronnd(s imt ime(t)*30)>0 && knowregime)

switch {newregime)
case { 1 , 11}

U.avg=n»ean(TAS(round(simtime (t) *30): round(simtime (t + 1)
*30))) ;

change=U.avg * 1.6878*(simtime (t + l) - s i m t i m e (t)) ;
case {2, 12}

r .avg=mean(r (round (simtime (t)*30) : round (simtime (t + l)*30))
) ;

change=r_avg *(s imt ime(t + l) - s i m t t m e (t)) ;
case {3 , 4 . 5 , 6, 13, 14, 15, 16}

change=alt (round(simtime (t + l) * 3 0)) - a l t (round{ simtime (t)
*30)) ;

case {7, 17}
q.avg=mean(q(round (simtime (t) *30) : round (simtime (t + l)*30))

) ;
change=q.avg*(simtime (t + 1)—simtime (t)) ;

end
9c change in bank angle
p.avg=niean(p(round (simtime (t) *30) : round (simtime (t + 1) *30))) ;
bchange=p_avg *{ simtime (t + 1)—simtime (t)) ;

end

7 il we entered a new regime
if (newregime"= regime)

9 get inver ted s ta tus of previous regime
If (j>0)

inver ted (j)=round(mean(a c t i v e , inv (s t a r t t i m e (j) : t))) ;
end
j= j+ l ;
9 add current regime to the maneuver htstorv
maneuverfj)=newregime ;
paramchangc{j)=change ;
bankchangefj)=bchange ;
s t a r t t i m e (j) = t ;

e l s e i f (knowregime ==1)
i f (j > 0)

9c add parameter change

55

paramchange (j)=paramchange (j)+change ;
bankchange(j)=bankchange(j)+bchange ;

end
end

end

I legs { 1 , 1 } , l e g s { 2 , l } , l e g s { 3 , l } , l e g s { 4 , l } , legs t ime]= t r im, maneuver (
maneuver, paramchange, bankchange , i n v e r t e d , s t a r t t i m e) ;

end

D.4 Legs Filtering (trim_maneuver function)

This function removes legs that do not respect the minimum length to be considered non-

transient, and makes groups the roll legs with surrounding legs if they share the same dominant

regime, except for level flight (the level flight with roll is kept as a leg by itself}.

funct ion [tmaneuver tparamchange r o l l s t i nve r t ed t s t a r t t i m e] = tr im.maneuver (
maneuver, paramchange, bankchange. i n v e r t e d , s t a r t t i m e)
9c t r ims a maneuver to remove the t r a n s i e n t regimes and t r e a t s the r o l l s

tmaneuver =[) ,
tparamchange =[] ;
r o l l s =[] ;
t i n v e r t e d =[] ;
t s t a r t t i m e =[] ;

if (l ength(maneuver)==l && sum(bankchange) <90)
r e t u r n ;

end
j . t r i m = 0 ;
for j = 1:length (maneuver)

regime=maneuver(j) ;
while(regime >10)

regime=regime-10 ;
end
if (regime==10)

if < j_ t r im~=0 && tmaneuver(j . t r i m) " = 1)
regime=tmaneuver(j . t r i m) ;

end
end
minparamchange=fl5, 35, 15, 15, 15, 15, 25, 10, 15, 15] ;
if ((a b s (paramchange (j))>minparamchatige(regime)) | | abs {bankchange (j))

>45)
% take th i s regime into account
if (j . t r i m >0)

if {tmaneuver! j . t r i m)==regime && (regime~=7 | | inver ted (j)==
inver ted (j . t r i m) | | paramchange (j)<minparamchange(regime)
))
9(when regime docs not change , add paramchange to

previous

56

*t paramchange except lor loops that change d i r e c t i o n s
tparamchange(j . t r i m) = tparamchange (j . t r im)+paramchange(j)

9- t r ea t changes in i n \ e r t e d a t t i t u d e
if (t i n v e r t e d (j . t r i m)==0 && inver ted (j)==1)

<l 10 11 = 2
t i nve r t ed (j . t r i m) = 2 :

end
If (t m v e r t e d (j _ t r i m) = = l && inver ted (j)==0)

9- [I 01 = 3
t i n v e r t e d (j . t r i m)=3 ;

end
if (t i n v e r t e d (j . t r i m) = = 3 && inver ted (j)==1)

9 [I 0 I j = 1
t i n v e r t e d (j . t r i m)=i ;

end
if (t i n v e r t e d (j - t r i m) = = 2 &&. inver ted (j)==0)

9 [0 1 0] = 0
t i n v e r t e d (j . t r i m)=0 ;

end
ba«k=bank+bankchange(j) ;
r o l l s (j . t r im)=0 ;

e lse
r<r new regime
j _ t r i m = j . t r im + 1 ;
r o l l s (j . t r i m) = 0 ;
tmaneuver (j . t r im)=regime ;
t s t a r t t i m e (j . t r i m) = s t a r t t i m e (j) ;
tparamchange (j . t r i m)=paramchange (j) ;
t in ver ted (j . t r i m) = i n v e r t e d { j) ;
bank=bankchange(j) ;

end
e lse

Sr f i r s t regime seen that is taken into account
j _ t n m = j . t r i m + l ;
r o l l s (j - t n m) = 0 ;
tmaneuverf j . t r i m)=regime ;
t s t a r t t i m e (j . t r i m) = s t a r t t i m e (j) ;
tparamchange (j . t r i m)=paramchange(j) ;
t i n v e r t e d (j . t r i m) = m v e r t e d (j) ;
bank=bankchange(j) ;

end
i f (abs (bank)>135)

"c include r o l l i n g element
if (abs(bank) < 270)

9 half ro l l
i f { r o l l s (j . t r i m) = = 2)

r o l l s (j . t r i m) = 2 2 ;
e lse

rolls (j.trim)=2 :
end

elseif(abs(bank)<540)
<-/c full roll
rolls (j.trim)-l ;

end

57

end
end

end
tstartt ime (j . t r i m + 1)= start time (end) ;
for j - tr im = i: length(tmaneuver)

tparamchange (j . t r im)=abs(tparamchange (j . t r im)) ;
end

end

D.5 Maneuvers Identification (getmaneuvers function)

This function performs the decomposition of the whole flight into maneuvers and, if asked to,

runs the distance measurement algorithm, on the fly with maneuver cutting.

function [maneuvers , f l ight t ime]=getmaneuvers (legs , legstime , extendedcatalog
, namemaneuvers)
9 Decomposes ieg» into maneuvers with time d e l i m i t a t i o n s

'> i n i t i a l i s a t i o n
n=l ;
i = l ;
for k=l:4

maneuvers{n .k} (i)= l egs{k} (l) ,
end
f l i g h t t i m e { n , 1 } (i) = legstime (1) ;
i= i+l ;
9 en ter loop
for j=2: length(l e g s { l })

i f (l e g s { l } (j) = = l && l e g s { 2 } (j) > 1 0 0)
9- use it for separa t ion of maneuvers
i f (maneuvers{n, l}(i—1)~=1)

9: add the regime to cur ren t maneuver
for k = l:4

maneuvers{n,k}(i) = l e g s { k } (j) ,
end
f l ightt ime {n, 1} (i) = legstime (j) ;

i f (j < i e n g t h (l e g s { l }))
1 get to the middle of the s t r a i g h t leg
maneuvers{n,2}(i)=maneuvers{n,2}(i) /2 :
fl i g h t t i m e { n , l } (i + l) = f l o o r (legstime (j) + (legstime (j + 1) -

legstime (j)) /2) ;
e lse

f l i g h t t i m e { n , l } (i + l) = l e g s t i m e (j + l) ;
end

e lse
9c add the paramchange to previous regime
i f { j < l e n g t h (i e g s { l }))

% on 1 > half of it
maneuvers {n ,2}(i - l)=maneuvers{n,2} (i - l) + l e g s { 2 } (j) / 2 ;

58

f l i g h t t i m e { n , l } (i) = floor (l egs t ime (j) + (l e g s t i m e (j + l) -
l e g s t i m e (j)) / 2) ;

e lse
9 t o t a l
maneuvers{n,2}(i - l)=maneuvers{n ,2}(i - l) + l e g s {2}(j) ;
f l i g h t t i m e { n , l } (1) = legst ime (j+1) ;

end
end
** proceed to naming
if (name maneuvers)

maneuvers{n,5}=-l*ones(length (ex tendedca ta log (: , !)) , !) ;

9 find d is tance to ca ta log maneuvers
9- => c rea te l i s t of a l t e r a t i o n s of maneuver
a l t e r a t i o n s = a l t e r m a n e u v e r (maneuvers(n ,1 :4) , I , ' f ') ,

9 and compare them all to the ca ta log
mindistance=200 ;
for cat = 1: length (ex tendedcata log (: , !))

for a l t e r = 1: length(a l t e r a t i o n s (: , 1))
for a l t . c a t = 1 t l e n g t h (ex tendedca ta log{ca t , 2 } (: , 1))

distance=comparemaneuvers (a l t e r a t i o n s (a l t e r ,1 :4) ,
e x t e n d e d c a t a l o g { c a t , 2 } (a i t . c a t , 1 : 4)) ;

if (d i s tance ""=-1)
d i s tance = d i s t ance + a l t e r a t i o n s { a l t e r . 5 } +

ex t endedca t a log{ca t , 2}{ a l t . c a t ,5} ;
if (maneuvers{n ,5 }(cat)==-! | | maneuvers{n ,5 } (

cat)>dis tance)
maneuver s{n ,5} (ca t)=d i s t ance ;

end
end

end
end
if {maneuvers{n ,5 }(cat)"-—1 &&. maneuvers{n ,5 }(cat)<

mmdi s t ance)
mindistance=maneuvcrs{n,5}(ca t) ;
maneuvers{n,6}=extendedcata log{cat ,1} ;

end
end

end
i f (j < I e n g t h (l e g s { l }))

9c s t a r t the next maneuver
n=n+l ;
i=l ;
for k = l:4

m a n e u v e r s { n , k } (i) = l e g s { k } (j) ;
end
9- get to the middle of the s t r a i g h t leg
maneuvers{n,2}(i)=maneuvers{n ,2}(i) / 2 ;
f i i g h t t i m e { n , l } (i) = cei l (leg st i m e (j) + (legst ime (j + 1)—legsti me (j

)) / 2) ;
i= i+ l ;

end
e l se

i f (l e g s { I } (j) - = 1 0)
9 simply copy the leg m maneuvers

59

for k = l-4
maneuvers{n ,k} (i)= legs{k} (j) ;

end
f l i g h t t i m e { n , l } (i) = legstin»e(j) ;
i=t+l ;

e lse
9 add the ro l l to the previous leg
maneuvers{n,3}(i™l)=legs{3}(j) ;
i f (l e g s { 3 } (j) = = 2 | | l eg s {3} (j)==24)

if (maneuvers {n ,4} (i -1)==0)
maneuvers{n,4}(i—1)=2 ;

else
maneuvers{n,4}(i -1)=3 ;

end
end

end
9 check whether the end of the f l igh t is a t t a i ned
i f (j = = l e n g t h (l e g s { l }))

f l i g h t U m e { n , l } (i) = l egs t ime(j + l) ;
end

end
end

end

D.6 Mapping (altermaneuver function)

This function maps the region around a given maneuver for distance measurement. It is used for

both reference maneuvers' alteration (making mistakes from the reference) and flown maneu

ver's alteration (canceling mistakes that could have been done).

function [a l t era t ions]= altermaneuver (maneuver , n.errors , maneuvertype)
9f Generates a l t e r a t i o n s of a maneuver with n . e r r o r s or less
9 Returns array of a l t e r a t i o n s and corresponding d i s tance
9c Process d i l f e r s as a function of maneuver!) pc .
9c - "r" means we ate a l t e r i n g a reference maneuver, and making e r ro r s
9c — '(' means we arc a l t e r i n g a ilown maneuver, and cancel ing e r r o r s

if (n.errors >1)
Vc generate a l t e r a t i o n s at level n—1
a l t era t ions = altermaneuver(maneuver, n . e r r o r s - 1 , maneuvertype) ;

'i and a l t e r them all by 1 er ror
n.max=length(a l terat ions (: , 1)) ;
for n=2:n.max

9c l i s t ol ne» a l t e r a t i o n s
candidates = altermaneuver(a l terat ions (n, 1:4), 1, maneuvertype) ;
for j=2: length(eandidates (: , 1))

9 check wether it is already in the table of a l t e r a t i o n s
found=false ;
k=0 ;
while (k<length(a l terat ions (: , !)) &&, "found)

60

k=k+l ;
distance=comparemaneuvers(a l t e r a t i o n s (k, 1 :4) , cand ida tes {

j , 1 . 4)) ;
found=(dis tance==0) ;

end
if ("found)

9- add candidate to the l i s t o(a l t e r a t i o n s
a l t e r a t
a l t e r a t
a l t e r a t
a l t e r a t

o n s { e n d + I , 1 } = c a n d i d a t e s { j . 1}
ons{end , 2}=candidates {j , 2}
ons{end , 3 } = c a n d i d a t e s { j , 3}
ons{end , 4}=candidates {j , 4}

e lse
a l t e r a t i o n s { e n d , 5}= a l t e r a t i o n s {n,5} + cand ida tes {j ,5} ;

% replace d is tance with sho r t e s t one
a l t e r a t i o n s {k,5}=min(a l t e r a t i o n s { n , 5 } + c a n d i d a t e s { j , 5 } ,

a l t e r a t i o n s {k,5}) ;
end

end
end

e l s e i f (n . e r r o r s = = 1)
9 Generate l i s t ot a l t e r a t i o n s
9c Put the maneuver i t s e l f in the
n . a l t = l ;
a l t e r a t i o n s { n . a l t ,1 } = maneuver{l}
a l t e r a t i o n s { n . a l t ,2} = maneuver{2}
a l t e r a t i o n s { n . a l t ,3} = maneuver{3}
a l t e r a t i o n s {n .a l t ,4} = maneuver{4}
a l t e r a t i o n s { n . a l t ,5}=0 ;

l i s t , at d i s t ance 0

9f Suppress a regime
i f (l e n g t h (maneuver{1}) >1)

9 Distance d e f i n i t i o n
if (strcmpf maneuvertype , ' r '))

9c Regime not seen where it should have
•7c level turn diagonal

d i s t a n c e ^ 30 40 30 30
e lse

'1- A d d m o n n a l regime was seen
9c level turn diagonal

d i s t a n c e ^ 20 40 20 20
end
9; inver ted s t a tus t reatment
m v e r t e d . p r o b l e m = [0 2 2 0

3 1 1 3
0 2 2 0
3 1 1 3] ;

v e r t i c a l
30 30

get rid
v e r t i c a l
20 20

been
loop
20]

of it
oop

J 20

n . a l t = n . a l t +1 ,
a l t e r a t i o n s {n . a l t
al t e r a t i o n s { n . a l t
a l t e r a t i o n s {n . a l t
a l t e r a t i o n s {n . a l t

1 } = maneuver{ 1 }(2:end)
2}=maneuver {2}(2. end)
3}=maneuver{3}(2.end)
4}=maneuver{4}(2.end)

suppressedregime=raaneuver{l } (1) ;
paramchartge=mancuver {2}(1) ;

61

a l t e r a t i o n s {n . a l t . 5}=dis tance (suppressedregime)+2*paramchange
(1 exp (- log (2) (pa ramchange /20)*4)) ;

for j=2 : l eng th (maneuve r{1}) -1
n . a l t = n . a l t + l ;

9 record new regimes sequence
regimes=[maneuver{l } (l : j - 1) maneuver{ l } (j+1 ' end)] ;
paramchange = [maneuver{2}(l : j - 1) maneuver{2}(j + l : e n d)] ;
r o l l s =[maneuver{3}(l :j —1) maneuver{3}(j + l : end)] ;
inver ted=[maneuver{4}(! : j - 1) maneuver{4}(j +1 :end)] ;

* then group repeated regimes except for loops that change
9: inver ted s t a tus
if (r eg imes (j —l)"=regimes(j) | | (regimes (j)==7 && i n v e r t e d (j

— 1)"= inver ted (j)))
a l t e r a t t o t i s { n _ a l t , l}=regimes ;
a l t e r a t i o n s {n .a l t , 2}=paramchange ;
a l t e r a t i o n s { n . a l t , 3}=ro l l s ;
al t e r a t t o n s { n . a l t , 4}=inver ted ;

e lse
% trim the repeated regime
if (j < l e n g t h (r e g t m e s))

a l t e r a t i o n s { n . a l t , l}=[regimes (1 . j —1) regimes (j+1 tend
)1 ;

a l t e r a t i o n s {n . a l t , 2} = [paramchange (1 : j - 1) paramchange
(j + l : e n d)] ,

a l t e r a t i o n s f n . a l t , 3}=[ro l l s (1 : j —1) r o l l s (j+1 :end)] ;
a t t e r a t i o n s { n . a l t , 4}=[inver ted (1 : j -1) i n v e r t e d (j + 1:

end)] ;
else

a l t e r a t i o n s {n . a l t , l}=regimes (1 : j -1) ;
a l t e r a t i o n s {n . a l t , 2}=paramchange (1 . j —1) ,
a l t e r a t i o n s { r t - a l t , 3 } = r o l l s (l : j 1) ;
a l t e r a t i o n s {n . a l t , 4}=inver ted { 1: j - 1) ;

end
9t and adapt paramchange, r o l l s and inver ted
a l t e r a t i o n s { n . a l t , 2}(j - t)=paramchange(j - l)+paramchange(j

) ;
if (s t rcmp(maneuvertype , ' r '))

a l t e r a t i o n s { n . a l t . 3}(j - l)=max(r o l l s (j - l : j)) ;
else

i f (r o l l s (j) " = 0)
i f (r o l l s (j - l) - = 0)

J f (r o l l s (j - l) = l && r o l l s (j) = = l)
a l t e r a t i o n s { n . a l t , 3}(j)=21 ;

end
i f ((r o I l s (j - l) = = 2 && r o l l s (j) = = l) | | (r o l l s (j

- l)== l && r o l l s (j)==2))
a l t e r a t i o n s { n .a l t , 3}(j)=32 ;

end
if (r o l l s (j~~l)==2 && r o l l s (j) = = 2)

a l t e r a t i o n s { n . a l t , 3}(j)=22 ;
end
i f (r o l l s (j - l) = = 2 2 && r o l l s (j) = = 2 2)

a l t e r a t i o n s { n . a l t . 3}(j)=42 ;

62

end
else

a l terat ions {n .a l t , 3}(j) = roll s (j) ;
end

end
end
if (inverted (j)-=-- l && inverted (j -1)"=-1)

a l t e r a t i o n s { n . a l t , 4 } (j - l) = i n verted .problem (inverted (j
- 1) + 1 , inverted (j) + l) ;

e lse
a l terat ions {n .a l t , 4 } (j -1)=-1 ;

end
end

suppressedregime=maneuver{ 1 }(j) ;
paramchange=maneuver{2}(j) ,
a l t e r a t i o n s { n . a ! t , 5}=distance (suppressedregime)+2*

paramchange *(i - e x p (- log (2) *(paramchange /20) A4)) ;
end
n.alt = n.alt + l ;
a l t e r a t i o n s { n . a l t , l}=maneuver { 1 }(1 :end- l) :
a l terat ions {n .a l t , 2}=maneuver {2}(1 -end-1) ;
a l t e r a t i o n s { n . a l t , 3}=maneuver{3}(1 : end- l) ,
a l t erat ions {n .a l t . 4}=maneuver{4}(1 : e n d - 1) ;

suppressedregime=maneuver{l}(end) ;
paramchange=maneuver{2}(end) ;
a l terat ions {n .a l t , 5}=distance (suppressedregime)+2*paramchange

* (l - e x p (- I o g (2) *(paramchange/20) *4)) ;
end
* Add a regime
9c that cuts another one
distance=—l*ones(8.8) ;
if (strempf maneuvertype . *r '))

9c Regime was not maintained constant while it should have been
9c l ine cu t t i ng a loop
dis tance (l .7)=20 ;
d i s t a n c e (3 . 6 , 7) = 2 0 * o n e s (4 , 1) ;
9 turn cu t t i ng a l ine
distance (2 ,1)=40 ;
dis tance(2 ,3 :6)=40*ones (i ,4) ;

9(loop cu t t i ng a l ine
distance (7 ,1) =20 ;
d i s tance(7 ,3:6)=20*ones(1 ,4) ;
9 loop cu t t i ng a turn
di s tance (7 ,2)=40 ;

e l se
9 A regime was not seen in between two s imi la r regimes — add it
9 l ine not seen/ t lown between two par ts of a loop
d i s t a n c e d ,7)=30 ;
d i s t a n c e (3 : 6 , 7) = 3 G * o n e s (4 , i) ;

9c r e c o n s t r u c t angle between two l ines t foi cut loops)

63

» 1 V 1
a n g l e s = [0 ,

0 .
3 1 5 ,

4 5 ,
2 7 0 ,

9 0 ,
1 8 0 ,

0 ,
2 2 5 ,
1 3 5 ,

] ;

0 .
0 .
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,

e l
4 5 ,

0 ,
0 ,

9 0 ,
3 1 5 ,
135 ,
2 2 5 .

0 ,
2 7 0 ,
180 ,

des
3 1 5 ,

0 ,
2 7 0 ,

0 ,
2 2 5 ,

4 5 .
1 3 5 ,

0 ,
180 ,

9 0 ,

v - c
9 0 ,

0 ,
4 5 ,

1 3 5 .
0 ,

180 ,
2 7 0 ,

0 ,
3 1 5 ,
2 2 5 ,

v - d
270

0
225
315
180

0
90

0
135
45

inv
1 8 0 ,

0 ,
1 3 5 ,
2 2 5 ,

9 0 ,
2 7 0 ,

0 ,
0 .

4 5 ,
3 1 5 ,

0 ,
0 ,
0 .
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,
0 ,

1—c
1 3 5 ,

0 ,
9 0 ,

1 8 0 ,
4 5 ,

2 2 5 ,
3 1 5 ,

0 ,
0 ,

2 7 0 ,

l - d
225

0
180
270
135
315

45
0

90
0

9

»
<f
9
9

%
»
»
9
9

l e v e l

c l i m b
desc
v c l i m b
v—desc
tnv l e v e l

inv c l i m b
tnv d e s c

for j = l : l e n g t h (m a n e u v e r { l })
for addedregime = l:7

if (d i s tance (addedregime , maneuver{ l}{j)) >0)
regimes = [maneuver{l}(l • j) addedregime maneuver{ 1 }(j ;#nd)]

paramchange = [maneuver{2}(! : j) 5 maneuver{2}{ j : end)] ;
r o l l s = (maneuver{3}(l : j) 0 maneuver{3}(j :end)] ;
i n v e r t e d = [m a n e u v e r { 4 } (l : j) - 1 maneuver {4}(j :end)] ;
i f (r e g i m e s (j) ~ = 7)

9 no need for paramchange adap ta t ion
paramchange{j)=paramchange(j) /2 ;
paramchange(j+2)=paramchange(j+2)/2 ;
9 i n se r t a l t e r a t i o n
n_alt = n . a l t + l ;

l}=regimes ;
2}=paramchange ;
3}=ro l l s :
4}=inver ted ;
5}=dis tance (addedregime , r eg imes(j

a l t e r a t i o n s { n . a l t
a l t e r a t i o n s { n . a l t
a l t e r a t i o n s { n .a l t
a l t e r a t i o n s {n .a l t
a l t e r a t i o n s { n . a l t

)) :
else

if (paramchange (j) >68) ;
9c r econs t ruc t loop angles
[f r oml ine , frominv]= f t n d p r e v l m e (maneuver , j)
9 get previous and next regimes
i f (j > l)

previousregime=maneuver{ 1 }(j - 1) ;
p revious inver ted=maneuver{4}(j - 1) ;

e lse
prcviousregime = fromline ;
p rev iousmver ted=f romtnv ,

end
if (j< leng th (maneuver {1}))

nextregime=maneuver{ 1 }(j+1) ;
nextinv=maneuver{4}(j+1) ;

e lse
nextregime = l ;
n e x t i n v =0 :

end
r,f r e c o n s t r u c t angle
for inv=0:l

i f (addedregime <5)

64

i n v e r t e d (j + l) = i n v ;
e lse

i n v e r t e d (j + l) = - l ;
end
if ((addedregime"=previousregime | | inver ted (j

+ l)~=prev ious inve r t ed } && (i n v e r t e d (j + 1)
"=-1 |[inv==0) && (addedregime"=
nextregime | | inver ted (j + l) " = n e x t i n v))
9c not cu t t i ng a loop by the l ine tt

s t a r t e d
9 from t unless loop changed d i r e c t i o n in
9f the middle! or e x i t s to
9i and ignoring inver ted var iant of
% v e r t i c a l l ines
if (frontline+6*frominv >10)

frominv=0 ;
end s
deltapararochange=angles (f romline +6*

frominv , addedregime+6*inv) :
i f (i n v e r t e d (j))

9e pushing instead of pul l ing
deltaparamchange=36Q^deltaparamchange

end

if (maneuver{2}(j)>del taparamchange)
paramchange (j) = del taparamchange ;
paramchange (j+2)=maneuver{2}(j)—

deltaparamchange ;
9- i n se r t a l t e r a t i o n
n . a l t = n . a l t + l ;
a l t e r a t i o n s {n . a l t , l}=regimes ;
a l t e r a t i o n s {n .a l t , 2}=paramchange ;
a l t e r a t i o n s {n . a l t , 3}=ro l l s ;
a l t e r a t i o n s { n .a l t , 4}=inver ted ;
a l t e r a t i o n s { n .a l t , 5}=d i s t ance (

addedregime, regimes (j)) ;
end

end
end

end
end

end
end

end

9- Add a regime between two regimes
if (s t rcmp(maneuvertype , "r '))

for j =2: I eng th (maneuver{ l} -1)
9 l ine flown between two loops ta push and a p u l l)
if (maneuver{l}(j)==7 && maneuver{1}(j + 1)==7)

9(get l ine at which second loop should s t a r t
[addedregime, added inv]=f indprev l ine (maneuver, j+1) ;

n . a l t = n . a l t + l ;

65

a l t e r a t i o n s {n . a l t ,1 } = [maneuver { 1 } (1 : j) addedregime
maneuver{ l} (j+ I : end)] ,

a ! t e r a t i o n s { n . a l t ,2} = [maneuver {2}(1 : j) 5 maneuver{2}(j + 1 :
end)] ;

a l t e r a t i o n s { n . a l t ,3} = [maneuver {3}(1 : j) 0 maneuver{3}(j + 1'
end)] ;

a l t e r a t i o n s {n . a l t ,4} = [maneuver{4}(1 ' j) addedinv maneuver
{ 4 } (j + l : e n d)] :

a l t e r a t i o n s {n .a l t ,5}=20 ;
end
9- loop seen af ter or before a turn
if (maneuver {1}(j)==2)

for i=0: i
vr adding before and af ter
for addedinv=0:l

* both poss ib le inver ted s t a tus
n . a l t = n . a l t + l ;

a l t e r a t i o n s {n .a l t , l } = [maneuver { 1 }(1 : j+i -1) 7
maneuver{ l} (j+ i : end)) ;

a l t e r a t i o n s {n . a l t ,2}=[maneuver{2}(1: j + i - 1) 0
maneuver{2}(j + i : end)] ;

a l t e r a t i o n s {n .a l t ,3} = [maneuver {3}(1: j + i - 1) 0
maneuver{3}(j+ i :end)] ;

a l t e r a t i o n s { n . a l t ,4} = [maneuver {4}(1: j+i —1)
addedinv maneuver{4}(j+i ;end)1 ;

a l t e r a t i o n s {n .a l t ,5}=20 ;
end

end
end

end
else

0,
3 1 5 ,

45,
2 7 0 ,

0,
0,
0,
0,

0,
0,

90,
3 1 5 ,

9- u n d e t e c t e d l o o p be tween two l i n e s
9c r e c o n s t r u c t a n g l e be tween two l i n e s
9h Ivl cl des v—c v—d inv
a n g l e s = [0 , 0 , 4 5 , 3 1 5 , 9 0 , 2 7 0 , 1 8 0 ,

0 , 0 , 0 , 0 ,
2 7 0 , 4 5 , 2 2 5 , 1 3 5 ,

0 , 1 3 5 , 3 1 5 . 2 2 5 ,
2 2 5 , 0 , 1 8 0 . 9 0 ,

c l imb
9 0 , 0 , 135 , 4 5 , 180 , 0 , 2 7 0 .

1 8 0 , 0 , 2 2 5 , 1 3 5 , 2 7 0 , 9 0 . 0 ,
l e v e l

0 . 0 , 0 , 0 , 0 , 0 . 0 ,
2 2 5 , 0 , 2 7 0 , 180 , 3 1 5 , 1 3 5 , 4 5 ,

ci i m b
1 3 5 , 0 , 180 , 9 0 , 2 2 5 , 4 5 , 3 1 5 ,

desc

i —c i —d
0. 135, 225 % level
0, 0 . 0 $
0, 90 . 180 9 climb
0, 180, 270 9 desc
0 . 45 , 135 » \ -

0, 225. 315 9- v-desc
0, 315, 45 9 inv

0, 0, 0 s"c
0, 0, 90 ^ tnv

0, 270, 0 9- inv

l i n e s = [l 3 4 5 6] ;
for j = l • length (maneuver {1 }) - i

found=false ;
i=0 ;
while(i< leng th (l i n e s) && "found)

66

i= i+l ;
if (maneuver{ 1 } (j) = = l i n e s (i))

found=true ;
end

end
i f (found)

9c regime j is a line
i=0 ;
found=false ;
w h i l e (i < l e n g t h (l i n e s) && "found)

i= i+ l ;
if (maneuvcr{l}(j + l) = = l i n e s (i))

found=true ;
end

end
i f (found)

9c regime j + 1 is also a line -> add both loops tkiv
9 or not)
switch(maneuver{4}(j))

case { -1 , 0,3}
s t a r t i n v = 0 ;

case {1,2}
s t a r t i n v = l ;

end
switch (maneuver {4}(j + 1))

case {-1,0,2}
f in i sh inv=0 ;

case {1,3}
f i n i sh inv= l ;

end
for addedinv=0:l

if (maneuver { 1}(j)+6* s ta r t in v >10)
s t a r t i n v = 0 ;

end
i f (addedinv==0)

addedparamchange=angles(maneuver{l}(j)+6*
s t a r t inv , maneuver{ 1}(j +l)+6* f i n i sh inv) ;

e lse
addedparamchange=360~angles (maneuver{l}(j)+6*

s ta r t inv , maneuver{ 1}{j+ l)+6* fini shinv) ;
end
d is tance =20*addedparamchange/45 ;

n . a l t = n . a l t + l ;

a l t e r a t i o n s {n .a l t ,1 } = [maneuver { 1}(1 : j) 7 maneuver
{ l } (j + l : e n d) J ;

a l t e r a t i o n s {n .a l t ,2}=[maneuver{2}(3: j)
addedparamchangc maneuver{2}(j+ 1 :end)] ;

a l t e r a t i o n s {n .a l t ,3} = [maneuver {3}(1: j) 0 maneuver
{ 3 } (j + l : e n d)] ;

a l t e r a t i o n s {n .a l t ,4} = [maneuver{4}(1:j) addedinv
maneuver{4}(j+1 :end)] ;

a l t e r a t i o n s {n . a l t ,5}= d i s t a n c e ;
end

67

end
e l s e i f (maneuver{l}(j }==7 && maneuver{ 1}(j+1)==7)

7 l ine not seen between two loop ta pull and a push)
9 get l ine at which second loop should s t a r t
[addedregime. addedinv]= f i n d p r e v l m e (maneuver , j+1) ,

n . a l t = n . a l t + l ;
a l t e r a t i o n s { n . a l t ,1 } = [maneuver{1}(1: j) addedregime

maneuver{l}(j + l t end)] .
a l t e r a t i o n s {n . a l t ,2} = [maneuver {2}{ 1 , j) 0 maneuver{2}(j+1:

end)] .
a l t e r a t i o n s { n . a l t ,3} = [maneuver{3}(1: j) 0 maneuver{3}(j+1:

end)] ;
a l t e r a t t o n s { n - a l t ,4} = [maneuver{4}(! ; j) addedinv maneuver

{ 4 } (j + l : e n d)] ;
a l t e r a t i o n s { n . a l t ,5}=30 ;

end
end

<;< i n i t i a l level f l igh t not seen
if (maneuver{ l} (l)~=I)

9 find s t a r t inv s t a tus
addedinv = [0 , I] ;
"c and add the l ine
for i =1 : l eng th{addedtnv)

n -a l t = n . a l t + l ;
a l t e r a t i o n s { n . a l t , ! } = [! maneuver{l}] ,
a l t e r a t i o n s {n . a l t ,2} = [0 maneuver{2}3 ;
a l t e r a t i o n s {n .a l t ,3} = [0 maneuver{3}] ;
a l t e r a t i o n s - j n . a l t ,4} = [addedinv (I) raaneuver{4}]
a l t e r a t i o n s { n . a l t ,5}=10 ;

end
end
9 f inal level 1 l igh t not seen
if (maneuver{1}(end)~=1)

91- find s t a r t m\ s t a tus
addedinv=[0, 1] ;
9 and add the l ine
for i = l : l eng th (added inv)

n . a l t = n . a l t + l ;
a l t e r a t i o n s { n . a l t .1 } = [maneuver{l} 1]
a l t e r a t i o n s { n . a l t ,2} = [maneuver{2} 0]
a l t e r a t i o n s {n . a l t ,3} = [maneuver{3} 0]
a l t e r a t i o n s {n . a l t ,4} = [maneuver{4} a d d e d i n v (i)]
a l t e r a t i o n s {n . a l t ,5} = 10 ;

end
end

end

9(Alter a regime
9(change a l i n e ' s angle
l i n e s ="[1 3 4 5 6] ;

% +45 -45 from inv

68

n e w l i n e s = [3 , 4 , 4 , 3 « level
0, 0 . 0, 0 71
5 , 1. 1, 5 9- climb
1, 6, 6, 1 9 desc
3 , 3 , 0, 0 9 v~d
4, 4 , 0, 0 9 \ c
] ;

for j = 2 ; l e n g t h { m a n e u v e r { l }) - l
9 check wether it is a l ine
found=false ;
i=0 ;
w h i i e (t < l e n g t h (l i n e s) && "found)

i= i+l ,
if (m a n e u v e r { 1 } (j) = = l i n e s (i))

found=true ;
end

end
i f (found)

9c get i t s inver ted s t a tus
switch (maneuver {4}(j))

ease { -1 , 0, 2}
inv=0 ;

case { 1 , 3}
inv=l ,

end
9 and a l t e r it (+45 and -45)
for i =1.2

regimes=maneuver{l} ;
inverted=maneuver{4} ;
if (r eg imes (j)==5 | | regimesfj)==6)

inver ted (j)=i—1 ;
end

regimes (j)=newlines (maneuver { l } (j) , i+2*inv)

if (regimes (j)==5 | | regimes (j)==6)
inverted(j)=—1 ;

end

n . a l t = n . a l t + l ;
a l t e r a t i o n s { n . a l t ,1 }= regimes ;
a l t e r a t i o n s { n .a l t ,2} = maneuver{2} ;
a l t e r a t t o n s { n . a l t ,3} = maneuver{3} ;
al t e r a t i o n s { n .a l t ,4}= inver ted ;
a l t e r a t i o n s { n .a l t ,5} = 30 ;

end
end

end
e l se

9 Put the maneuver i t s e l f in the l is t . at d i s t ance 0
n . a ! t = l ;
a l t e r a t i o n s {n . a l t , l } = maneuver{l} ;
a l t e r a t i o n s {n . a l t ,2} = maneuver{2} ;
a l t e r a t i o n s { n . a l t ,3} = maneuver{3} ;

69

a l t e r a t i o n s { n . a l t ,4} = maneuver{4}
a l t e r a t i o n s { n . a l t ,5}=0 ;

end

end

D.7 Comparing Maneuvers (comparemaneuvers function)

This function measures the distance between two maneuvers that have the same regimes se

quence. This is the function that considers errors in pitch angle change during loops, and errors

in rolls.

function distance=comparemaneuvers (maneuver , reference)
9 compares a maneuver to a reference maneuver
lv r e tu rns the d i s tance between the two if the regimes sequence match or
9 - i if the> don" i

if (length (maneuver { 1})==Jength (r e f e r e n c e { l }))
rnatch=true ;
j = l ;
while (j<=length (mancuver{ 1}) && match)

if (maneuver { l } (j)"= reference { ! } ()) | | (maneuver {4} (j)"= reference
{ 4 } (j) && re ference{4} (j) " = - !))
9c no match if a d i f fe rence is noted on regimes sequence or
9c inver ted sequence texcept if inver ted= 1 on r e f e r e n c e ,
% which means it does not mat ter)
match=false ;

end
j=j+l ;

end
if (match)

distance =0 ;
for j = l. length (maneuver{2})

i f (r e f e r e n c e { 2 } (j) * = 0)
9c d i s t ance as a function of parameter change and
9r reference change in pitch angle
del t a=abs(maneuver { 2} (j) - r e f e r e n c e { 2 } (j)) ;
distance = d i s t a n c e + 2 * d e l t a * (l - e x p (- l o g (2) * (d e l t a / 2 0) * 4)) ,

end
9 Check for rol ls
s w i t c h (r e f e r e n c e { 3 } (j))

case 0
9 No roll author!/ e d
if (maneuver{3}(j) >0)

distance = distance+30 ;
end

case 1
9 Only full roll authorized
if (maneuver{3}(j)==2)

distance=distance+30 :

70

end
case 2

9 Mandatory half ro l l
if (maneuver{3}(j)"=2)

d i s tance = dis tance+30 ;
end

end
end

else
d i s t a n c e = - l ;

end
else

distance=—1
end

end

D.8 Plots scripts

graphs

This script generates the flight data graphs used in this report.

* p lo t s graphs of f l igh t data and assoc ia ted regimes

f ig(n . f i g) = f i g u r e (n . f i g) ;
figname{ n.f ig ,1 }= *0l-Nz* ;
n . f i g = n . f ig + l ;
s u b p l o t (2 , l ,1)
hold on
plot (time ,Nz , "k*) ;
for n = l : length (f l i g h t t i m e)

p lo t ([s imt ime(f l i g h t t i m e {n}(1)) simtime (f l i g h t t i m e {n } (I))] , [- 1 0 , 10] ,
- . k ')

p lo t ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e {n}(end))] , [— 10,
10] , " - . k ')

end
a x i s ([0 dura t ion -10 10])
9s legend ('Nz ' , "Loca t ion" , ' B e s t ')
gr id on
hold off

s u b p l o t (2 , i ,2)
hold on
p lo t (simtime , s t a t e s (: , 1) , ' r ') ;
plot (simtime , s t a t e s (: ,2) , ' b *) ;
p lot (simtime , s t a t e s (: ,3) , ' g ") ;
for n = l : l e n g t h (f l i g h t t i m e)

p l o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime (f l i g h t t i m e {n } (1))] , [- 0 . 5 , 1,5]

p lo t ([simtime (f l i gh t ! ime{n} (end)) simtime (f l ight t ime {n}(end))] , [- 0 . 5 .
1 .5] , ' - . k ')

71

end
a x i s ([0 dura t ion -0 ,5 1.5])
legend (' + / - ! ' , ' n o t „ 0 ' , ' < G ' , ' L o c a t i o n ' , ' B e s t ')
gr id on
hold off

f i g (n . f i g) = f i g u r e (n . f i g) ;
f igname{n.f ig ,1 } = ' 0 2 - t h e t a " ;
n . f ig = n . f ig + l ;
s u b p l o t (2 , l , 1)
hold on
plot (time , theta , *k ') ;
for n = l i l e n g t h (f l i g h t t i m e)

p l o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime (f l i gh t t ime {n } (1))) . [- 100 . 100] ,
• - - k ')

plot ([s imtime (f l i g h t t i m e {n} (end)) simtime (f l i gh t t ime {n}(end))] , I - lQih
100] , ' - J k ')

end
a x i s ([0 dura t ion -100 100])
* legend { * theta ' , ' Location " , " Best ')
gr id on
hold off

s u b p l o t (2 , 1 ,2)
hold on
p lo t (simtime , s t a t e s {: ,4) , ' r ') ;
p lo t (simtime , s t a t e s (; ,5) , ' g ') :
p lo t (simtime . s t a t e s (: ,6) , ' b ') ;
p lo t (simtime , s t a t e s (: , ?) , ' y ') ;
for n = l : l e n g t h (f l i gh t t ime)

p lo t{ [simtime(f l i g h t t i m e { n } (l)) simtime(f l i g h t t i m e {n}(1))] , [- 0 . 5 , 1 .5] ,
* - . k ')

p lo t ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e {n}(e n d))] , [- 0 . 5 ,
1 .5] , ' - , k ')

end
a x i s ([0 dura t ion -0 .5 1.5])
l e g e n d (" 4 5 " , "90*. * -45* , ' - 9 0 ' , ' L o c a t i o n * , ' B e s t ')
gr id on
hold off

f i g (n . f i g) = f i g u r e (n . f i g) ;
f igname{n.f ig ,1 }= "03-phi ' ;
n . f ig = n . f ig + l ;
s u b p l o t (2 , 1 , 1)
hold on
plot (time ,bank , ' k ') ;
for n = l : I e n g t h (f l i g h t t i m e)

p l o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime(f l i g h t t i m e { n } (1))] , [-200 , 200] ,
' - . k ')

p lo t ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e {n}(end))] , [-200 ,
2 0 0] , ' - . k ')

end
a x i s ([0 dura t ion -200 200])

72

% legend ('bank a n g l e ' , ' L o c a t i o n " , ' B e s t ')
gr id on
hold off

s u b p l o t (2 , 1 ,2)
hold on
p lo t (s imt ime , s t a t e s (: ,12) , ' r *) ;

for n = l : l e n g t h (f l i g h t t i m e)
p l o t ([s i m t i t n e (f l i g h t t i m e { n } (l)) simtime (f l i gh t t ime {n}(1))] , [- 0 . 5 , 1 .5] ,

' - . k ')
p lot ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e { n } (e n d))] , [- 0 . 5 ,

1 .5] , - - J O
end

a x i s ([0 dura t ion -0 ,5 1.5])
legend(* Wings„level * , ' L o c a t i o n ' , ' B e s t ')
gr id on
hold off

f i g (n . f i g) = f i g u r e (n . f i g) ;
f igname{n.f ig ,1}= *04-q' ;
n_fig = n . f i g + i ;
s u b p l o t (2 , l , 1)
hold on
p lo t (time , q . *k ') ;
for n = l r length (f l i g h t t i m e)

p I o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime(f l i g h t t i m e { n } (l))] , [-100 , 100],
' - . k ')

p lot ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e {n}(end))] , [-100 ,
100] , ' - . k ')

end
a x i s ([0 dura t ion -100 100])
9 legend t " pi tch r a t e " , " L o c a t i o n ' , ' B e s t ')
gr id on
hold off

s u b p l o t (2 , l ,2)
hold on
p lo t (simtime , s t a t e s (: ,10) , ' r ') ;
for n = l: l eng th (f l i g h t t i m e)

plot ([simtime(f l i g h t t i m e { n } (!)) simtime (f l i gh t t ime { n } (l))] , [- 0 . 5 , 1 .5] ,
' - . k ')

p lot ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i gh t t ime {n} (end))] , [- 0 . 5 ,
1 .5] , ' - . k ')

end
a x i s ([0 dura t ion -0 .5 1.5])
l e g e n d (" n o t „ 0 ' , ' L o c a t i o n ' , ' B e s t ')
gr id on
hold off

fig (n . f i g) = f igure{ n . f i g)
f igname{n.f ig ,1}='05—p'

73

n. f ig = n . f i g + l ;
s u b p l o t (2 , 1 , 1)
hold on
p l o t (t i m e , p , *k*) ;
for n = l : I e n g t h (f l i g h t t i m e)

p l o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime(f l i gh t t ime{n } (1))] . [-300 , 300] ,
' - , k ')

p lot ([simtime (f l i g h t t i m e {n } (end)) simtime (f l i g h t t i m e { n } (e n d))] , [-300 ,
300] , ' - . k ')

end
a x i s ([0 dura t ion -300 300])
<* l e g e n d ! ' r o l l r a t e ' , ' L o c a t i o n " , 'Bes t ")
grid on
hold off

s u b p l o t (2 , l ,2)
hold on
p lo t (simtime , s t a t e s (: ,9) , "r ') :
for n = l: length (f l i g h t t i m e)

p l o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime (f l i g h t t i m e {n } (1))] , [- 0 . 5 , 1 ,5] ,
* - . k ')

plot ([simtime (f l i g h t t i m e {n } (end)) simtime (f l i gh t t ime {n} (end))] , [- 0 . 5 ,
1 .5] , ' - J O

end
a x i s ([0 dura t ion -0 .5 1,5])
legend (' n o t „ 0 ' , ' L o c a t i o n * . ' B e s t ')
gr id on
hold off

f ig(n . f ig) = f i g u r e (n . f i g) ;
f igname{n.f ig ,1}= '06—r ' ;
n . f ig = n . f ig + l ;
s u b p i o t (2 , l , 1)
hold on
p lo t (time ,r , ' k ') ;
for n = l : l e n g t h (f l i g h t t i m e)

p lo t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime (f i i gh t t ime{n } (1))] , [- 5 0 , 5 0] ,
- . k *)

p lot ([simtime (f l i g h t t i m e {n}(end)) simtime (f l i g h t t i m e {n}(end))] , [—50,
5 0] , * - . k ')

end
ax is ([Q dura t ion -50 50])
9c legend ("yaw r a t e " , ' L o c a t i o n ' , 'Bes t ")
gr id on
hold off

subplo t (2 .1 ,2)
hold on
plot (simtime , s t a t e s (: , 1 1) , * r ') :
for n = l t l ength (f l i g h t t i m e)

p I o t ([s i m t i m e (f l i g h t t i m e { n } (l)) simtime (f l i g h t t i m e {n}(1))] , [- 0 . 5 , 1.5)
* - .k*)

p lot ([s imt ime (f l i g h t t ime {n}(end)) simtime (f l i g h t t i m e {n}(e n d))] , [- 0 . 5 ,
1 .5] , ' - . k ')

74

end
a x i s ([0 duration
legend ("nouO* ,
grid on
hold off

-0.5 1.5])
Location *, ' Best *

plotmaneuvers

This script generate the graph that is used to generate the regimes during maneuvers figures.

It consists of a plot of the regimes vector evolution in time, along with captioning the legs from

the flight description.

9c Create*, a plot of regimes a f te r lowpass f i l t e r with marks at regimes
ff t r a n s i t i o n s and i n v i s i b l e l abe l s on regimes

f i g (n . f i g) = f i g n r e (n . f i g) ;
n.f ig = n.f ig + l ;
hold on
grid on

plot (simtime
plot (stmtime
plot (simtime
plot (simtime
plot (simtime
plot (simtime

desc
plot (simtime
plot (simtime .
plot (simtime .
plot (simtime .

regimes.lowpass (
regimes.lowpass (
regimes.lowpass (
regimes_iowpass(
regimes.lowpass (
regimes.lowpass (

regimes.lowpass (
regimes.lowpass (
regimes.lowpass (
regimes.lowpass (

, 1) ,
,2) .
,3) ,
.4),
.5),
,6),

,7),
,8),
,9) ,
,10) .

"Color*
'Color*
'Color *
"Color*
* Color '
* Color '

'Color'
'Color'
'Color'
'Color

[0 0 0]) ; 9c s t r a i g h t & level
[0.749 0 0 749]) ; 9 turn
[0 0 1]) ; * climb
[0 1 0]) : 9 descent
[0.8 0.8 0 .8]) ; 9 V-climb
[0.5774 0 5774 0.5774]) ; 9(V-

[0.694 0.5744 0.392]) ; 9 loop
[0.8 0,8 0 .8]) ; * t a i l s l i d e
[1 0 0]) ; * ro l l

, [0 0.5744 0.5744]) ; % inver ted

a x i s ([0 duration —0.5 1.5]) ;

* legend t * Level " , 'Turn " , ' C l i m b ' , ' D e s c e n t ' , ' V - c h m b ' , ' V - d c s c c n t ' , . .
* 'Loop ' . ' T a i l s l i d e " , ' Roll ' , ' Inverted " ." Location " . " EastOutside ' i ,

y . text = -0.15 ;
for n = l: length (f l ight t ime)

for i = l : (l e n g t h (f l i g h U i m e { n }) - 1)
plot ([simtime (f h g h t t i m e { n } (j)) simtime (f l ightt ime { n } (j))] , [- 0 . 5 ,

1 . 5] , ' - . k ')
x . t e x t = (s i m t i m e (f l i g h t t i m e { n } (j)) + s i m t i m e (f l i g h t t i m e { n } (j + l) >) / 2 ;
if (y . text==--0 .15)

y . t ex t = ~0.3 ;
e lse

y . t ex t = -0.15 ;
end
t e x t h a n d l e { n , i } (j) = t e x t (x . t e x t , y . t e x t , regimeskey(fl i g h t { n , i } (j)) . "

HorizontalAlignroent ' , ' c e n t e r ' , ' V i s i b l e ' , "Off") ;
end

75

end
c l e a r x . t e x t y . t e x t
hold off

savefigures

This script was developed to make saving all figures generated by the program easier. It

formats the figures to two different formats and saves a version of each one for integration in this

report and the presentation.

9c Exports the f igures in cur ren t d i r ec to ry

for i . f i g = l : l e n g t h (f i g) - l ,
f i g u r e d . f i g) ;
se t (gcf , ' PaperPositionMode ' , ' auto ') ;
s e t (g c f . ' P o s i t i o n ' . (0 50 800 400]) ;
p r i n t (*-dpng ' , s t r e a t (figname{ i . f i g } . * .big .png *)) ;
setCgcf, ' P o s i t i o n ' , [0 50 400 300]) ;
p r i n t (' -dpng ' , s t r e a t (figname{ i . f i g } , ' , p n g ')) ;
p r i n t f ' - d e p s " , s t r c a t (f i g n a m e { i . f i g } , ' e p s ')) ;

end

f igu re (fig (end))

i f (s equence== l)
f i l e n a m e = { ' l i - C l i r a b ' ; '12-Dive*; * 13-Cuban' ; '14-Loop* ; '15-Turn* ; *16-Ro!l '}

e l s e i f (s e q u e n c e = = 2)
f i lename={ ' 2 1 - S . l ' ; "22-S.2 ' ; ' 23 -Squa re . l * ; *24~Square.2 ' ; *25-Square.3 ' ; *

26-X* ; '27-Rev.Cuban ' ; *28-Loop.rol l * ; '29-Immelmann ' } ;
end
for n = l : l e n g t h (f l i g h t t i m e)

axis ([simtime (f l i g h t t i m e { n } (1)) simtime(f l i g h t t i m e { n } (e n d)) -0 ,5 1.5]) ;
for j =1 : l e n g t h (t e x t h a n d l e { n })

s e t (t e x t h a n d l e { n } (j) , ' V i s i b l e " , *on') ;
end

s e t (g c f , 'PaperPos i t ionMode*, ' a u t o ' , " P o s i t i o n ' , [0 50 600 400]) ;
p r i n t (' - dpng ' , s t r c a t { f i lename{n} ,* .big .png")) ;
se t (gcf , 'PaperPos i t ionMode*, ' a u t o " , " P o s i t i o n ' , [0 50 400 300]) ;
p r i n t (' - dpng ' , s t r e a t (filename {n} .*. png ")) ;
p r i n t (*-deps ' , s t r c a t (f i lename{n} . ' . eps ')) :
for j =1 : I e n g t h (t e x t h a n d l e { n })

s e t (t e x t h a n d l e { n } (j) . ' V i s i b l e ' , ' o f f ") ;
end

end

i f (sequence==2)
9c group maneuvers 1 and 2 (two legs ol" SI on the same graph
a x i s ([s i m t i m e (f l i g h t t i m e { l } (D) simtime (f l i g h t t i m e {2}(end)) -0 .5 1.5]) ;
for n = l:2

76

for j = l : l e n g t h (t e x t h a n d l e { n })
s e t (t e x t h a n d l e { n } (j) , ' V i s i b l e * , *on') ;

end
end
p r i n t (' - d p n g ' , *21-S .png ') ;
p r i n t (* - d e p s * , ' 2 1 - S . e p s ') ;
for n = l:2

for j =1 : l eng th< tex thand l e{n})
s e t (t e x t h a n d l e { n } (j) , ' V i s i b l e * , * o f f) ;

end
end
9r group maneuvers 3 . 4 and 5 on the same graph
a x i s ([s i m t i m e (f l i g h t t i m e { 3 } (l)) simtime(n i g h t t i m e {5}(end)) -0 .5 1.5]) ;
for n=3:5

for j - l : l e n g t h (t e x t h a n d l c { n })
s e t (t e x t h a n d l e { n } (j) , ' V i s i b l e ' , 'on*) ;

end
end
p r i n t ("-dpng* , '23-Square . png *) ;
p r i n t (" - d e p s ' , " 2 3 - S q u a r e . e p s ') ;
for n = 3:5

for j = i : l e n g t h (t e x t h a n d i e { n })
s e t (t e x t h a n d l e { n } (j) , ' V i s i b l e " , ' o f f ') ;

end
end

end

B.9 Minor Functions

A few more functions were defined and used in the process,

Maneuvers Description Output

This fitnction outputs the description of the maneuvers in Matlab prompt. It basically calls

printlegs for each maneuver,

func t ion pr in tmaneuvers (f l i g h t)
9c d i sp l ays maneuvers d e s c r i p t i o n in the command window

for n = l : l e n g t h (f l i g h t (: , 1))
f p r i n t f ('Maneuver„%i " , n) ;
p r i n t i e g s (f l i g h t (n . l : 4))
i f (l e n g t h (f l i g h t (n . :)) > = 6)

if (~$sempty(length (f l i g h t { n , 6 })))
f p r i n t f (* \n lden t i f i ed„as^%s* , f l i gh t {n,6}) ;

end
end
f p r i n t f (' \ n \ n ') ;

end
end

77

Legs Description Output

The prmtlegs function outputs the descnption of the legs in sequence in Matlab prompt

func t ion p r m t l e g s (l egs)
for t = l l e n g t h (t e g s { l })

regime= ' ,
switch (l eg s { l } (i))

case 1
i f ((i > l && K l e n g t h (l e g s { l })) | | l eg s{3} (i) "=0 | | i e g s { 4 } (i)

regime=" ft ~ i n - l e v e l „ f l i g h t ' ,
end

case 2
r e g i m e = ' d e g - i n „ a - t u r n ' ,

case 3
regime= ' ft ..climb * ,

case 4
regime=* f t - d e s c e n t ' ,

case 5
regimes* ft w v e r t i c a l _chmb ' ,

case 6
regtme= * f t - v e r t i c a l ^descent * ,

case 7
r eg ime= 'deg-m„a~loop * ,

case 8
regime=' t a i l s l i d e ' ,

end
i f (l e g s { 4 } (i) = = l)

r eg ime=s t r ca t (regime , " - (i n v e r t e d) ') ,
end
switch (l egs { 3 } (i))

case 1
r eg ime=s t rca t (regime , *~with„rol l ') ,

case 2
r eg ime=s t r ca t (regime , *„with„half „ r o l l ') ,
i f (l e g s { 4 } (i) = = 2)

r eg ime=s t rca t (regime , ' - t o - i n v e r t e d) ,
e l s e i f (i e g s { 4 } (i) = = 3)

r eg ime=s t rca t (regime , *„from„inverted ') ,
end

end

if ("isempty (regime) 5
fpr in t f (' \n f t iw%s , r o u n d (l e g s { 2 } (t)) , regime) ,

end

end
end

Regimes Key

The regimeskey function makes the correspondance between regimes indices and names.

78

function t ex t reg ime = regimeskey (regime)
el- regime number to name
switch (regime)

case 1
tex t reg tme = 'Level * ;

case 2
tex t reg ime = 'Turn ' :

case 3
tex t reg ime = "Climb * ;

case 4
text regime="Descent ' ;

case 5
textregime=*V-Climb* ;

case 6
tex t reg ime = 'V-Deseent * ;

case 7
t ex t r eg ime= 'Loop ' ;

case 8
tex t reg ime = * T a i l s l i d e ' ;

case {9, 10}
tex t reg ime = *Ro!l " ;

de fau l t
t ex t reg ime= "Unknown" ;

end

end

Previous line

Used to determine which lines can cut a loop leg, by determining on which line the loop

started. Also used when adding a loop in between two lines.

function [p r e v i o u s l i n e , p r ev ious inve r t ed]= f i n d p r e v l m e (maneuver , j)
9c gets the l ine from which current loop (j) s t a r t ed
found=false ;
i = j - l ;
angle=0 ;
while ("found && I >0)

switch (maneuver { 1}(l))
case { 1 , 3 , 4 , 5, 6}

p r ev ious l i ne=maneuve r{ l} (i) ;
p r ev ious tnve r t ed = maneuver{4}(t) ;
found=true ;

case 7
*>f texeord loops angle
if (maneuver{4}(i)==0)

angle=angle+maneuver{2}(i) :
else

angle=angle maneuver{2}(i) ;
end

end
i = i - l ;

79

end
if ("found)

p r e v i o u s l i n e = l ;
p r e v i o u s m v e r t e d = 0 :

end
if (ang le ""=0)

9c l ines reached from level with
9 45 90 135 180 225 270 315 360
g e t l i n e = [3 , 5, 3 , 1, 4 , 6, 4 , 1 9c pull

4 , 6, 4, 1, 3 , 5, 3 , 1 <* push
] ;

g e t i n v e r t e d = [0, 0, 1, 1. 1, 0, 0, 0] ;
i ndex=round (abs (ang l e) / 45) ;
if (angle >0)

d i r= l ;
e lse

dir=2 ;
end
o f f s e t = [0 . 0 , 1, 7 , 2, 6] ;
offse t = o f f s e t (p r e v i o u s l i n e) + 4 * p rev ious inve r t ed
index=index+offse t ;
whilefindex >8)

index=index-S ;
end
p r e v i o u s l i n e = g e t l i n e (d i r , index) ;
p r e v i o u s i n v e r t e d = g e t i n v e r t e d (index) ;

end
switch (p r e v i o u s i n v e r t e d)

case { — 1, 3}
p r e v i o u s i n v e r t e d = 0 :

case 2
p r e v i o u s i n v e r t e d = l ;

end
end

80

	Flight Regime and Maneuver Recognition for Complex Maneuvers
	Scholarly Commons Citation

	ProQuest Dissertations

