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ABSTRACT

As computers are added to the cockpit , the pilot's job is

changing from one of manually flying the aircraft, to one of su

pervising computers which are doing navigation , guidance and ener

9Y management calculations as well as automatically flying the

aircraft . In this supervisorial role the pilot must divide his

attention between monitoring the aircraft's performance and giv

ing commands to the computer .
In this paper ,

normative stra

tegies are developed for tasks where the pilot must interrupt his

monitoring of a stochastic process in order to attend
to othar

duties .
Results are given as to how characteristics of the sto

chastic process and the other tasks affect the optimal stra

tegies .

INTRODUCTION

" New York control, this is NASA l arriving on CARMEL 2
with

an expected arrival time at MERGE waypoint of 14:31:09 . " "NASA

l , you are cleared to arrive on CARMEL 1 , with a merge
time of

14:32:10 . " This exchange between pilot and controller occured in

a recent Ames simulation study of 4D RNAV in the terminal

area (1,2 ) . The pilot was cleared for a different RNAV approach

route and arrival time . The pilot next entered
this data into

-1



his onboard navigation and guidance computer .
In doing this he

ถ to divide
his attention between monitoring the autopilot's

performance with his flight instruments and antering data into

the computer through his multifunction display and keyboard .
Ob

servations of how pilots divided their attention between monitor

ing and data entry tasks in this simulation study were the

motivation for the modeling of attencion sharing presented in the

present paper .

The environment in which the pilot interacts with his on

board computer is quite different from other jobs where a

interacts with a computer .
In 7 management information system ,

teleoperator control, or in most human interaction with a comput

er , the computer is , or can easily be halted to allow the
person

time to think and plan his next input . Here the person and the

computer work sequentially . When an aircraft is being controlled

in real time by a computer it can not be stopped while the pilot

leisurely inputs his commands .
In this environment both computer

and man must work in parallel . The pilot must interrupt his non

itoring to interact with the computer . He must also interrupt

the discrete tasks to monitor . Other characteristics of discrete

tasks and monitoring in
the cockpit are the following . The

discrete tasks are presented at random . They should be accom

plished by a certain time but usually plenty of time is available

to do the tasks . Attention must be diverted from monitoring for

fairly long blocks of time (seconds ) to do the discrete tasks .

Ine displays
the

pilot must monitor show the error between his

vehicle's state and the desired state . When the aircraft is con
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trolled by an autopilot , these signals
are relatively low

bandwidth signals that should be monitored for out of tolerance

readings .

The objective of this research is to
determine how design

parameters of both displays and the computer interface affect

monitoring and data entry performance . In this paper , a task
is

developed
which has many of the above characteristics but which

is simple enough so that the attention allocation problem has
an

optimal solution . Three models based on the internal model con

cept are developed for this task . In the first two ,the pilot is

rewarded for
diverting

his attention from monitoring to do

discrete tasks . The third model treats the discrete tasks as a

constraint and then uses a dynamic programming formulation to

maximize monitoring performance subject to the constraint of fin

ishing all of the discrete tasks on time .

SPECIFIC PROBLEM

Process Dynamics : The subject is to monitor the output of

first order filter
driven by white gausian noise . The display

(fig.1) is quantized in both time and position .
The display

is

updated every
2 seconds and is quantized into il cells , .5 o

wide .
The display is defined as being out of tolerance if it

is

in the outermost 2 cells (1x > 1.75 o ) . The process bandwidth

determines how predictable the signal is . The ratio of the toler

ance
to the output variance determines how frequently the signal

will be out of tolerance .

Monitoring Task : Whenever the subject observes the process as be
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ing out of tolerance he gets a reward of one unit .

Discrete Task : At each time at which the display is observed , the

subject decides to either monitor next time or to divert his at

tontion to the discrete tasks for one or more units of time . Two

nethods of rewarding
the subject for doing discrat ? tasks were

investigated . in the first method , the subject is given a reward

of Runits for every discrete task done . If R is zero the subject

would always monitor and if R is greater than
the steady state

probability that the signal is out of tolerance the subject would

always do discrete tasks . The objective was to maximize the
to

tal reward from monitoring and discrete tasks. In the second

method , the subject was constrained to do m discrete tasks in the

next n time units .
The objective was to maximize the reward for

monitoring subject to the constraint of
finishing all of the

discrete tasks . The constraint formulation seems to be more ac

In addition , it has

curate description of the real situation .

the large advantage of not requiring the experimenter to specify

the relative worth of time spent on monitoring and discrete

tasks . Unfortunately this formulation is computationally more

difficult .

THEORY

A review of the literature in the fields of manual control ,

human
factors and psychology found a number of empirical studios

which required the operator to interrupt monitoring tasks
to do

discrete
tasks . Models have also been developed for either in

strument monitoring or discrete
tasks . No papers were found
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which addressed the problem of what strategies
operators USO ,or

should
us ?, to time share their attention between monitoring and

discrete tasks . However , Smallwood's paper ( 3 ) on human instru

mennt
monitoring proposes an approach which can be applied to the

present oroblem . This approachThis approach takes the reasonable assunotion

that the operator has an internal model of the process he is mon

itoring and of the enviornmental factors that affect the process .

This internal model can be used to predict the future behavior

of the DCOCOSS . Smallwood makes the following assumptions that

sccibe how the operator reacts to enviornmental inputs .

Assumption 1 : The human operator bases his state of infor

mation about his enviornment upon an internal model of this

environment ; the model is formed as a result of past percep

tions of his environment .

Assumption 2 : The
human operator behavas optimally with

respect to his task and his correct state of information

within his psycho -physical limitations.

The structure of this model is shown in figure 2 . The key prob

lems in using this approach are to discover the form of the

operators internal model and the optimal response .
If the opera

tors model of the process is exact and he has no psycho - physical

limitations the resulting model is normative .
Introducing errors

in the internal model and psycho -physical limitations such as ob

servation noise and errors in the operators internal model con

vert the original normative model into a discriptive model of hu

man behavior .

In the following models , it is assumed
that the operators
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internal model of the process and enviornmental disturbances is

exact . He knows the parameters of the process and can use this

knowledge to predict the probability of being
in a particular

state given he was in a known state n seconds ago and has not ob

served the process since that time .
For a first order process

with bandwidth
Wy

, the distribution of the position of the

display after last observing the display t seconds ago at posi

tion X

xo
is a gausian distribution with

wt

mean m ( t )
xge

2 w
variance v ( t )

2

dall - e
0

ա է)

Figure 3 plots the mean and variance of
this distribution and

the
probability

that the signal will be out of tolerance in the

future for various values of xg

Myopic Model : In this model a decision is made at each stage

to either monitor or do a discrete task next time depending on

which activity maximizes the immediate expected reward .
In other

words find

2 = ( 1 - x )

M

max

x = 0,1 Paj(k) + xR]i out

if x = 0 then monitor next time .

x = 1 then do a discrete task next time .

where

J
.

Pij(k ) = the probability that the process will be in state

stage , given process state i , knext the was in
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stages ago .

Ploutli , k ) the probability
that the processр

jout

will be

Pi
j
(k)

out of tolerance next stage given the pro

cess was in state i , k stages ago .

R = the reward for
doing

the discrete task for one

stage .

Another way to think of this strategy is to find the maximum

volue of
k such that Ploutli , k ) < R after each observation of the

state i and then direct attention to discrete tasks for k stages .

As a specific example , consider the case where
TA

1. and

W 0 ..2 . Table 1 gives values of Ploutli , k ) . If the above deci

sion cule is followed at each stage the strategy in Table 2
will

be obsecved for different values of reward R. For example if

R = 0.948 , the subject should continue to monitor whenever the pro

cess is observed in states 1 to 4 and divert attention to the

other duties for three stages
whenever the process is observed

in state 5 or 6 .

Figure 4 is a plot of two measures of
a constant

sampling

strategy They are the fraction of time spent doing other tasks

or not monitoring the display , f ( tasks ) , and the fraction
of ob

served out of tolerance
signals to the total out of tolerance

signals , f (hit ) = p (hit ) / p (out ) , for various values of iscrete

task reward and
strategy . These values are calculated as fol

lows :

E(tasks)-3 d; 'i / (d; + 1) *

i i i

i
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P (nits)

=

" i

( 1Σ

i out

f ( tasks) )

where

di= the number of stages devoted to discrete tasks after

the display is observed in state i .

T
i the steady state probability of

the process being

observed in state when the fixed time sharing

strategy specified by d.
is followed . The elements

i

of
the observed " single " step transition matrix are

P

ij i

The expected reward for following this fixed strategy is,

E ( R ) = P (hit ) + R * f (tasks) .

Figure 4 shows
that for a first order display with

banawidth
of .2 , 85 % of the out of tolerance signals will be ob

served even if only 50% of the time is spent monitoring and
this

myopic strategy is followed . Figure 4 also shows the monitoring

performance that would be expected if the pilot could
make per

fect predictions and his expected performance if he could make no

predictions . As the bandwidth of the process decreases and
thi

signal becomes more predictable performance approaches that pos

sible with perfect information .

This model has the advantage of being very simple and it ca

be
easily

extended to
continuous

state and continuous ti

processes . Unfortunately this model does not appear to
maximiz

the long
term

expected
reward for both monitoring and othe
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tasks .
This model neglects the

future value of
knowing

what

state the
process

is in . The next three models use A dynanic

programing formulation to explicitly
account for these future

values .

Dynamic Programing models with Rewards . The following dynam

ic
programing model maximizes the sum of the expected immediate

rewards and the future rewards .

Define

foli , k ) = the maximum expected return when the process was ob
n

served in state i , k stages ago and there are n

stages left to go .

inli ,k ) = x = 0 then monitor next time .

x = 1 then discrete task next time .

R = discrete task reward .

then

foli,k )
( 1 - x )max

x = 9,1

Pil(k ) + D Pij

( k ) f

n - 1 (1,1))

1 out

j

x ( R + D I Pijk) fn - 1 (jok +

Pig(n){n=1696k+1)]

fgli, k )

WeThe terms premultiplied by D are the future values . If D = 1

have the optimum dynamic programing solution , if DER this model

reduces to the myopic model .

In the next formulation a decision is made after each moni

toring observation of
how many discrete tasks to do next . The
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decision may be to do no discrete tasks in which case the opera

tor continues to monitor . To make a decision involves using the

" internal model" of the process the PPii
( k ) ' s ,

to predict the

probability of being in each state in the future . This formula

tion is equivalent to the above formulation but because it uses

one less state it is computationally more attractive .

Define

fo ( i ) = the maximum expected return when the process is

ob

served in state i with n stages to go .

d ( i ) = g = the number of discrete tasks done before the next
n

inonitoring observation when the process is observar

in state i with n stages to go .

R = reward for doing one discrete task .
then

fnli)

max

g = 0,1 , ...n
[R

R9 + Σ

j out

Pij (g ) + EP
( 9 ) f

ij En - a - 1 '
i

f . ( i ) = 0

Table 3 shows the steady state solution
to this normative

model for the same parameters used in the myopic model , w = .2 , o

= 1.9 , T = 1.75 , for various values of R. Note that for

discrete task reward of 0.059 the steady state decision for state

6 , the center state , is to look away for two stages where as
the

myopic strategy is to look away for 4 stages .
This difference in

strategies is because the value of knowing the process is out
of

tolerance
is greater than the immediate reward for observing the

process out of tolerance . For a given discrete task reward , P ,

the steady state decisions of the myopic model and the dynamic
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programing model become more divergent as the
process bandwidth

decreases
and the signal becomes more predictable .

These steady

state solutions were obtained by using value iteration and assum

ing that the steady state had been reached by stage 49 . They can

also be solved by a modification of Howard's policy iteration

technique (4 ) that allows for looking ahead g + l stages .

Figure 5 plots the expected steady state
reward per stage

for both monitoring and discrete tasks as a function of the

discrete task reward , R , for 4 values of process bandwidth .
When

R = 0 the total reward is just 0.08 the steady state probabili

ty that the process is out of tolerance . This is the expected

reward
per stage of always monitoring . Th ? diagonal line shows

the reward received for always doing discrete tasks .
The upper

diagonal line is the maximum reward with perfect knowledge of

what the signal will be in the future . The graph shows that an

optimal time
sharing strategy results in a gain above the two

lower bounds and below the upper bound .
As the process bandwidth

decreases the
gain becomes closer to that possible with perfect

information . Note that the maximum advantage of an optimal stra

tegy over a nonsampling strategy occurs for R = 0.98
the steady

state probability that the process will be out of tolerance .

One disadvantage of this dynamic programing model is that it

requires R , the reward for doing discrete tasks, to be specified .

In any real task it would be very difficult to determine an actu

al numerical value for R. Even in a laboratory task in which the

experimentor tells the subject the value of
R and the subject

uses
a time sharing strategy similiar to the model , it is doubt
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ful that the subject's implicit value for
doing

discrete tasks

would
agree with the explicitly specified value of R. One solu

tion to the problem of rewards is to use the reward only to gen

erate the samoling strategies and then pick the strategy that de

votes the appropriate amount of time to discrete tasks. Figure 6 .

plots the fraction of hits , f (hits ) = p (hit ) / 0 (out ) , vs. the frac

tion of time devoted to discrete tasks , f (tasks ) , for
both the

dynamic programing strategies and the myopic strategies.
As can

be seen
the curves are essentially identical . The rewards for

a
given strategy and the strategies are different but when moni

toring performance is plotted against f (tasks) instead of reward ,

the
graphs are

essentially identical . This very is promissing

for modeling monitoring of multiple higher order processes be

the myopic strategy is only based on the probability thatcausa

the signal will be out of tolerance in the future , not the proba

bility of which specific state the process will be in as required

in the dynamic programming formulations .

Figure 7 shows how the fraction of hits changes when OD

timal sampling strategy
is followed for various process

bandwidths . AS the bandwidth decreases the performance ap

proaches that possible with perfect information .

In many discrete tasks there is the equivalent of a
set up

cost each time the task is started or restarted after being in

terrupted . For example , in entering data into
a

keyboard , some

time is lost while the pilot shifts his attention to the keyboard

and positions his hands . This type of set up cost can be included

by introducing nonlinearities into the reward per discrete task
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function . In figure 8 , c is the set up cost.
When C = we have

the normal case considered above .

Figure 9 shows that as set up cost increases monitoring per

formance rapidly decreases
to that possible with no predictive

information of the processes future state . When a set up cost is

involved the formulas derived above for f (tasks) must be modified

as follows .

f (tasks ) Ξ Σ d

Idri / (0; + 1) ti

i i i

where C = the number of stages wasted due to the set up cost ,

C.

d

-c if aif di ?

i

if d .
dis

c

i

f (tasks) is now the productive fraction of time spent on discrete

tasks . The fraction of time wasted because of the set up cost is

given by ;

f (waste )

= ? (d ; - / ( ; + 1) " i

i i

The fraction of time spent monitoring is just ;

f (mon ) = l - f (tasks ) -f (waste )

Dynamic Programing model with constraint . Like the last for

mulation , a decision is made
after each monitoring observation

of how many stages to devote to discrete tasks . However instead

of
rewarding the subject for doing discrete tasks, we will con
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9595mL jout

strain him to do exactly m discrete tasks in the next n stages

( m < n ) .

Define

f ( m , i ) = the maximum expected return when the process is ob
n

served in state i with n stages to go and m discrete

tasks remain to be done .

än (m , i ) = q = the number of stages devoted to discrete tasks be

forc the next monitoring observation when the pro

cess is observed in state i with n stages to go .

C = set up cost , the number of stages wasted when atten

tion is shifted to discrete tasks .

9 = 9 - C if 9 -C29

if 9 - C < ?

then

fn (m , i )
max Σ

Pijl

( g ) + P ( 9 ) f
En -9-1(m - a

all

n

*

ij

--a*,j ]

f (m , i )
n

0 if n = m

In this formulation , the fraction of the remaining time

which
must be spent on discrete tasks is just , f (tasks) = m / n

and

the fraction of hits is f
n

( m , i ) / n at state ( m , i ) and stage n .

Figure 10 plots the fraction of hits vs the
fraction

of

time spent on discrete tasks for three different values of n , the

number of stages to go . Note that in this formulation the moni

toring performance is slightly less than the other two formula

tions and performance degrades further as the number of stages , n ,
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illɔwel to do the tasks is further reduced . This is as expectent

because
the subj ?ct is constrained to spend exactly 1 out of the

next n stages on discrete tasks where as in the earlier model the

subject
had 20 limit as to how long he could postpone the

discrete tasks .

Figures ll and 12 snow the effect of a discrete task set
UO

cost on sampling strategy ind monitoring performance .
As the sot

up cost increasis , the best strategy is to look away for longer

an longer periods of time when the display is observed near the

center . with a set up cost of 2 , if the display is observed in

Ene center to ? best policy is to complete all of the discrete

tasks with no interruption . This is why the monitoring perfor

mance shown in
figure 12 for a set up cost of 2 is so close to

the performance tnat is possible when no predictions are made .

Figure 13 Soows the sensitivity of monitoring performance to

discrete task chunk size the minimum number of stages which

must be spent on iscrete tasks . Note that when the minimum

chunk size is 5 that tns decrement in performance is only large

when less than about 60 % of the time must be spent on discrete

tasks . Tnis is because above 69 % the optimum strategy is to look

away for more than 5 stages so that chunk size is less of a
con

straint on performance . Finally figure 14 shows the sensitivity

of monitoring performance to display tolerance .

CONCLUDING REMARKS

In this paper the general problem of time sharing attention
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btween monitoring and other duties has been
described and one

myopic
ana

three dynamic programing models have been presented .

Model performance was presented in terms of the fraction of out

of tolerance signals seen as a function of the amount of time

spent on non -monitoring duties . This way of viowing
performance

eliminates the difficult problem of specifying relative rewards

for monitoring and other duties . It allows an appropriate stra

tegy to be chosen based on the fraction of time that must be de

voted to other duties . The effect of such parameters as process

bandwidth and tolerance and discrete task set up cost and chunk

siz ? on monitoring performance and normative time
sharing stra

tegies was shown . Future work will extend these models to mul

tiple second order processes and
incorporate human limitations

such as observation noise and internal model errors .
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Table 1. Values of Ploutli , k ) the probability the proc - 5S will be

out of tollerance next stag ? given the process was in

state i , k stages ago for a first order process with

o = 1.0 , w = . 2 rad / stage and T = 1.75 .
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Table 2. The nuinber of discrete tasks that will be done given the

process is observed in state i for various ranges of re

ward Rif the myopic strategy is followed for a first

order process . ( o = 1.0 , w = 9.2 rad /stag?, T = 1.75 )

StrategyR

gain / stage

d

49
( i )

5 .5

1

1

i = 1 to 3

0

0

0

1

.02

.84

.06

.08

.19

.12

.14

.16

.18

4
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3

0

1
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0

0

0
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29
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.985

.991

. ] 99
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.134
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1
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29

modelTable 3. Steady state solution to the dynamic programing

with rewards .

(o = 1.9 , w = 0.2 rad /stage , T = 1.75 , Plout ) = ^ . 9 % )
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NUMBER OF STAGES, n ,,

LEFT TO FINISH

DISCRETE TASKS

32 16

+

31 15

30 14

29 14 + +

28 14

+ O +

+
+

+

27 14 +

+

26 13

25 13

+

DISPLAY INDICATORNUMBER OF DISCRETE

TASKS; m , LEFT

TO DO

Figure 1. Drawing of the quantized monitoring display . A new

line was added every 2 seconds . The display was quan

tized into ll cells - .50 o wide . The display was out

of tolerance if it was in the outermost 2 cells indi

cated with the + signs . At stages 32 and 27 this sub

ject decided to look away from the display to do

discrete tasks for 2 and l stages respectively .

TASK ENVIRONMENTINTERNAL MODEL

OF ENVIRONMENT

SENSORY

SYSTEM

OPTIMAL

DECISION

ACTION

Pigure 2. A block diagram of the human

( 3 ) ) .

monitor
( from Smallwood
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Figure 3. The state of information of a perfect monitor after

looking away from the output of a first order filter

with bandwidth 0.2 rad / stage driven by white noise .
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