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MODELS FOR INTERRUPTED MONITORING GF A STOCHASTIC PROCESS
by Everett Palmer

Ames Research Center,NASA,Moff~tt Fi~ld,CA 94435

ABSTRACT

As computers are added to the cockoit, the pilot's djob is
changing from one of manually flying the aircraft, to on2 of su-
pervising computers which are doing navigqation,guidance 3nd ener-
gy management calculations as well as automaticallv flving the
aircraft. In this sunervisorial role the pilot must divide his
attention between monitoring the aircr3ft's nerformance and qiv-
ing commands to the computer. In this paper, normative stra-
teqgies are developed for tasks where the pilot must interrupt his
monitoring of a stochastic process in order to attend to othear
duties. Results are given as to how characteristics of the sto-
chastic process and the other tasks affect the ootimal stra-

tejies.

INTRODUCTION

"New York control, this is NASA 1 arriving on CARMEL 2 with
an expected arrival time at MERGE waypoint of i4:31:ua.“ "NASA
1, you are cleared to arrive on CARMEL 1, with a mergzs time of
14:32:10." This exchange between pilot and controller occursd in
a rz2cent Ames siﬁulation study of 4D RNAV in the terrin=l
area(l,2). The pilot was cleared for a different RNAV approach
route and arrival time. The pilot next entered this data into
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nis onboard navigation and guidance comnuter. In doina this he
n31 to divide his attention between monitoring the autopilot's
nerformance with his flight instruments =2nd =atering data into
th2 computar through his multifunction display and keyboard.. Ob-
s2rvations of how nilots divid2d their ittention betwezon monitor-
ing and data entry tasks in this simulation studv were the
motivetion for the modeling of attencion sharing presented in the

pres~nt paper.

The environment in which the pilot interacts with his on-
board computer is quite different from other jobs wnnre 2 verson
interacts with a computer. 'In 1 management information system,
tal20perator control, or in most human interaction with a comput-
er, the computer is, or can e2asily be nalted to allow the person
time to think and plan his next input. Here the pnerson and the
computer work‘sequentially. When an aircraft is being controlled
in real time by a computer it can not be stopprd while the pilot
leisurely inputs his commands. 1In this environment both computer
and man must work in parallel. The pilot must interrunt his mon-
itoring to interact with the computer. He must 2lso interrunt
the-discrete tasks to monitor. Other characteristics of Aiscrete
tacsks and monitoring in the <cockpit are the following. The
discrete tasks are presented at random. They should be accom-
plished by a certain time but usuially plenty of time is available
to do the tasks. Attention must be diverted from monitoring for
fairly long blocks of time (seconds) to do the discrete tasks.
The displays the pilot must monitor show the error betwecen his

vehicle's state and the desired state. When the aircraft is con-
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trolled by an autopilot, these signals are relatively 1low
bandwidth signals that should be monitored for out of tolerance

readings.

The objective of this research is to determine how design
parameters of both displays .and the computer interface affect
monitoring and data entry performance. 1In this paper, a task is
developed which has many of the above characteristics but which
is simple enough so that the attention allocation problem has 2n
optimal solution. Three models bascd on the internal model con-
cept are developed for this task. In the first two,the pilot is
rewarded for diverting his attention from monitoring to Ao
discrete tasks. The third model treats the discrete tasks as a
constraint and then uses a Aynamirc programming formulation to
maximize monitoring performance subject to the constr2int of fin-

ishing all of the discrete tasks on time.

SPECIFIC PROBLEM

Process Dynamics: The subject is to monitor the output of 2

first order filter driven by white gausian noise. The display
(fig.l) is quantized in both time and position. The display is
updated every 2 seconds and is quantized into 11 cells, .50 o
wide. The display is defined as being out of tolerance if it |is
in the outermost 2 cells (Ix] > 1.75 o ). The process bandwidth
determines how predictable the signal is. The ratio of the toler-
ance to the output variance determines how frequently the siqgnal
will be out of tolerance.

Monitoring Task: Whenever the subject observes the process as be-
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ing out of tolerance h2 gets a reward of on2 unit.

Discret> Task: At each time at which the display ic obscrved, the

subject decides to either monitor next time or to divert his at-
t ntion to th» discrete tasks for one or more units of time. Two
merhods of rawarding the subject for doing discret~ tasks were
invastigated. 1In the first method, the subject is giv2n 3 reward
of R units for ovary discrete task done. If R is zero the subject
would always monitor aznd if R is greater than the steady state
orobability that the signal is out of tolerance the subject woulAd
always do discrete tasks. The objective w2s to maximize the to-
tRrl reward from monitoring and discrete tasks. In tho second
method, the subject was constrained to Ao m discrete tasks in the
n2xt n time units. The objective was to maximize the reward for
monitoring subject to the constraint of finishing all of the
discrete tasks . The constraint formulation se2ms to be more Aac-
curate description of the real situation. In addition , it has
the large advantage of not requiring the experimenter to specify
the relative worth of time spent on monitoring and discrete
tisks. Unfortunately this formulation 1is computationally more

difficult.

THEORY

A review of the literature in the fields of manual control,
human factors and psychology found a number of empirical studies
which required the operator to interrupt monitoring tasks to do
discrete tasks. Models have also been developed for either in-

strument monitoring or discrete tasks. No papers were found
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~shichh nidress~d the problem of what strategies opecrators use,or
sihould wus>, to time share their >ttention betwr~en monitoring and
dic-rete tisks. Howevar, Smallwood's vanor (3) on human instru-
mont monitoring proposes an a~pproach which c»n be anplied to the
pres2nt oroblem. This aoproach makes th2 rcasonable assuwption
that the opcr-tor has an internal mod~l of the obrocess hc is mon-
itoring and of the enviornmental factors that affect the process.
This internal modcl can be used to predict the future behavior
of the proc23s. Smallwood makes the following assumptions that
d2sccibe how the operator r=2acts to enviornmental inouts,
Assumption 1: The human operator bases his state of infor-
mation 2bout his enviornment upon an internal model of this
environmnent; the model is formed 2s a3 result of past overceo-
tions of his environment. :
Assumption 2: Th2 human operator behaves opotimally with
resoect to his task 3nd nis correct state of information-
within his psycho-physical limitations.
The structure of this model is shown in figure 2. The key bprob-
lems 1in using this aoproach are to discover the form of the
operators internal model and the optimal response. Tf the operra-
tors model of the process is exact and he has no nsycho-physical
limitations the resulting model is normative. 1Introducing errors
in the internal model and psycho-physical limitations such as obh-
servation noise and errors in the operators internal model con-
vert the original normative model into a discriptive model of hu-

man behavior.

In the following models, it is assumed that the overators
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internal model of the process and enviornmental disturhances is
2xact. He knows the parameters of the process and can use this
knowledge to predict the probability of being in a particular
state given he was in a known state n seconds ago and has not ‘ob-
served the process since that time. For a first order process
with bandwidth uy, ythe distribution of the position of the
display after last observing the display t seconds ago at posi-

tion X, is a gausian distribution with

mean m(t) = xae.“mt

variance v (t) = oﬁ(l-e- 2w &y

Figure 3 plots the mean and variance of this distribution and
the probability that the signal will be out of tolerance in the

future for various values of Xg -

Myopic Model: In this model a decision is made at each stage
to either monitor or do a discrete task next time depending on
which activity maximizes the immediate expected reward. In other

words find

z = Tax [(l-x)' 3 Pij(k) + xR]
x=90,1 i out
if x=@ then monitor next time.
~x=1 then do a discrete task next time.
where
Pij(k)= the probability that the process will be in state j
next stage,given the process was 1in state i, k
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stajes ago.

P(out|i,k) = 3
j out
will b2 out of tolerance next stage given the pro-

Pij(k) = th> orobability that the orocess
cess was in state i, k stages ago.
R= the reward for doing the discrete task for one

staga.

Another way to think of this strategy is to find the maximum
volue of Kk such that P(outli,k)<R after each observation of the

state i and then direct attention to discr2te ta2sks for k stages.

As a specific example, considar the case where Tp = 1.7 and
w= 0.2. Table 1 gives values of P(out|i,k). If the abova Adeci-
sion tule is followed at each stage the strateqy in Table 2 will
be obsecved for different values of reward , R. For example if
R=0.%48, the subject snould continue to monitor whenever the pro-
cess 1is observed in states 1 to 4 and divert attention to the

otiner duties for three stages whenever the process 1is observed

in state 5 or 6.

‘Fiqure 4 is a plot of two measures of a constant sampling
strategy. They are the fraction of time spent doing other tasks
or not monitoring the display,f(tasks), and the fraction of ob-
served out of tolerance signals to the total out of tolerance
signals, f(hit)=p(hit)/p(out), for various values of Adiscrete
task reward and strategy. These values are calculated as fol-
lows:

f(tasks)=§ d, li/f (@ + 1) w,
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P(hits) = 2 LI (1 - f(tasks))
i out
where
d.= the number of stages devoted to discrete tasks after

th

D

display is observed in state i.

.= th

1]

steady state probability of the process being
observed in state 1 when the fixed time sharing
strategy specified by di is followed. The elements

of the observed "single" step transition matrix are

Th2 expected reward for following this fixed strateqgy is,

E(R)=P(hit)+R*f (tasks).

Figure 4 shows that for a first order disolay with 2
bandwidth of .2, 85% of the out of tolerance signals will be ob-
served even if only 50% of the time is spent monitoring and this
myopic strategy is followed. Figure 4 also shows the monitoring
pzrformance that would be expected if the pilot could make ver-
foect predictions and his expected performance if he could make n¢
predictions. As the bandwidth of the process decreases and th:
signal becomes more predictable performance aovproaches that pos

sible with perfect information.

This model has the advantage of being very simple and it ca
be easily extended to continuous state and continuous ti
processes. Unfortunately this model does not appear to maximiz

the 1long term expected reward for both monitoring and oths
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tasvs. This model neglects the future wvalue of knowing what
state the process 1is in. The next three models use a dynanmic
programing formulation to expblicitly account for these future

v3ilues.

Dynamic Programing models with Rewards. The following dynam-

ic programing model maximizcs the sum of the expected immediate
rewards and the future rewards.
Definc
fn(i,k)= the maximum expected return when the process was ob-
served in state i, k stages ago and there are n
stages left to go.
dn(i,k)=x=ﬂ then monitor next time.
x=1 then discrete task next time.

R= discrete task reward.

then
£ (i,k) = max [(1-x) ( X P..(k) +D 3 P..(k) £__.(§,1))
n't’ x=9, 1 [ 1 out il 3 ij n-1
+ x (R+D3Z Pij(k) fn_l(j,k-l-l))J
j
fglisk) = 0

The terms premultiplied by D are the future values. 1If D=1 , we
have the optimum dynamic programing solution, if D=0 this model

reduces to the myopic model.

In the next formulation a decision is made after each moni-
toring observation of how many discrete tasks to 4o next. The
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decision may be to do no discrete tasks in which case the opera-
tor continues to monitor. To make a decision involves using the
"internal model" of the process , the Pii(k"s' to oredict the
probability of being in each state in the future. This formula-
tion is eauivalent to the above formulation but because it uses
one less state it is computationally more attractive.
Define
fn(i)= the maximum expected return when the process is ob-
served in state i with n stages to go.
dn(i)=q= the number of discrete tasks done before the next
monitoring observation when the process is observ=A4

in state i with n stages to go.

R = reward for doing one discrete task. then
£ (i) = max R g+ 2 P..(q) + 2 P..(q) £ ___ (*\]
n q=0,1,...n [ j out i 13 n-a-1
fﬂ(1)=0

Table 3 shows the steady state solution to this normative
model for tne same parameters used in the myopic model, wm= .2, o
=1.A,T =1.75 , for various values of R. Note that for a
discrete task reward of 0.053 the steady state decision for state
6, the center state, is to look away for two stages where as the
myoéic strategy is to look away for 4 stages. This difference in
strategies is because the value of knowing the process is out of
tolerance 1is greater than the immediate reward for observing the
process out of tolerance. For a given discrete task reward,R,
the steady state decisions of the myopic model and the dynamic
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‘ptograminq model become more divergent as the process baniwidth
decreases and the signal becomes more predictabl~2. These steadv
state solutions were obtained by using value iteration and ascsum-
ing that the steady state had bheen r~ached by stage 40, They Ean
also be solved by a modification of Howard's policy iteration

techniquz (4) that allows for looking ahead g+l stages.

Figur> 5 olots the cxpected steady state reward ver stage
for both monitoring and discrete tasks as a function of the
discretce task reward, R, for 4 values of orocess bandwidth. When
R=@ , the total reward is just #.MA8 , the steady state probabili-
ty that the process is out of tolerance. This 1is the expected
reward per stage of always monitoring. Th~ diaqonal line shows
the reward receivad for always doing discrete tasks. The upvper
di~rgonal 1line 1is the maximum r=2ward with ocrfect knowledge of
what the signal will be 1in the future. The gqraph shows that an
optimal time sharing strategy results in a gair above the two
lower bounds and below the upper bound. As the process bandwidth
decreases the gain becomes closer to that possible with perfect
information. Note that the maximum advantage of an optimal stra-
tegy over a nonsampling strategy occurs for R=0.09 - the steady

state probability that the process will be out of tolerance.

One disadvantage of this dynamic programing model is that it
cequires R, the reward for doing discrete tasks, to be specified.
In any real task it would be very difficult to determine an Aactu-
al numerical value for R. Even in a laboratory task in which the
experimentor tells the subject the value of R and the subject
uses a time sharing strategy similiar to the model, it is doubt-
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ful that the subject's implicit value for doing disccate tasks
would agree with the explicitly specified value of R. One solu-
tion to the problem of rewards is to use the reward only to gen-
erate the samoling strategizs and then pick the strateqy that‘de-
vot2s the appropriate amount of time to discrete tasks. Fiqure K
plots the fraction of hits, f(hits)=p(hit)/p(out), vs. the frac-
tion of time devoted to discrete tasks,f(tasks), for both the
dynamic programing strategies and the myopic strategies. As can
be seen , the curves are essentially idontical. The rewards for
a given strateqgy and the strategies are different but when moni-
toring performance is plotted against f (tasks) instead of reward,
the graphs are esszntially identical. This very is promissing
for modeling monitoring of multiple higher order orocesses be-
caus2 the myopic strategy is only based on the probability that
the signal will be out of tolerance in the future, not the proba-
bility of which specific state the process will be in as required

in the dynamnic programming formulations.

Figure 7 shows how the fraction of hits changes when a obo-
timal sampling strategy is followed for various process
bandwidths. As the bandwidth decreases the performance ap-

proaches that possible with perfect information.

In many discrete tasks there is the equivalent of a set up
cost each time the task is started or restarted after being in-
terrupted. For example, in entering data into a keyboard, some
time is lost while the pilot shifts his attention to the keyboard
and positions his hands. This type of set up cost can be included
by introducing nonlinearities into the reward per discrete task

-12-



function. In figure 8, C is the set up cost. When C=f we have

the normal case considered above.

Figure 9 shows that as set up cost increases monitoring -per-
formance rapidly decreases to that possible with no predictive
information of the processes future state. When a set up cost is
involved the formulas derived above for f(tasks) must be modified

as follows.

f(tasks) = I d //I (d + 1) LA
whare C= the number of stages wasted due to the set ubp cost,
C.

d. =43, - C |if di > C
=0 if di < C
f(tasks) is now the productive fraction of time svent on discrete
tasks. The fraction of time wasted because of the set up cost is

given by;

. *
E(waste) = 2 (d; - 4;) /f (@ + 1) w,

The fraction of time spent monitoring is just;
f (mon)= 1-f(tasks)-f(waste)

Dynamic Programing model with Constraint. Like the last for-

mulation, a decision is made after each monitoring observation
of how many stages to devote to discrete tasks. However instead
of rewarding the subject for doing discrete tasks, we will con-
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strain him to do exactly m discrets tasks in the next n staqges
(m<n) .
Define
fn(m,i)= th2 maximum expected return when the process is ob-
served 1in state i Qith n stages to go and m discrete
tasks remain to be done.
dn(m,i)=q= the number of stages devoted to discrete tasks be-
fore the next monitoring observation when the nro-
cess is obscrved in state i with n stages to qgo.
C= set up cost, the number of stages wasted when atten-
tion is shifted to discrete tasks,
g =g-C if g-C>9

=g if g-C«9

then
%*
f (m,i) = max p] P..(gq) + 3 P..(q) £ __ . (m-q rj)]
n ﬂgqgm[ jout 1] all j 13 n-q-1
£ (m,i) =8 if n=m

In this formulation, the fraction of the remaining time
which must be spent on discrete tasks is just, f(tasks)=m/n and

the fraction of hits is fn(m,i)/n at state (m,1i) and stage n.

Figure 14 plots the fraction of hits vs the fraction of
time snent on discrete tasks for three different values of n, the
number of stages to go. Note that in this formulation the moni-
toring performance 1is slightly less than the other two formula-
tions and verformance degrades further as the number of stages,n,
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illowed to 3o th: t2sks is further reduced. This is as expecteAd
becaus®  the subj2ct is constrained to snend exactly m out of the
n2xt n stages on discrete tasks where as in th2 earlier model the
subjact had no 1limit as to how 1long he zould postpon~ the

discret2 tasks.

Figures 11 3and 12 saow the effect of 3 discrete task set uo
cost on sampling strat2gy cnd monitoring perfarmance. As the s=2t
uo cost incre2as-s, the hest stratecay is to look away for 1longer
and lonjzsr periods of tim» when the disnlay is observed near the
center. With a set up cost of 2 , if the display is observed in
the center th2? best oo0licy is to complete all of the discrete
tasks with no intercupntion. This is why the monitoring overfor-
mance shown in figure 12 for a set up cost of 2 is so close to

th2 performance tnat is nossible when no predictions are made.

Figure 13 saows tne sensitivity of monitorina nerformance to
discrete task chunk size - the minimum number of stages which
must be so2nt on discrets tasks. Note that when the minimum
chunk size 1is 5 that tno decrement in performance is only large
when less than zbout 68% of the time must be spent on discrete
tasks. Tnis is because above 6A% the optimum strateqy is to look
away for more than 5 stages so that chunk size is less of a con-
strezint on performance. Finally figure 14 shows the sensitivity

of monitoring performance to display tolerance.

CONCLUDING REMARKS
In this naper the goneral problem of time sharing attention
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botween monitoring and other duties has been described and one
myopic and three dynamic programing models have been presented,
lodel performance was presented in terms of the fraction of out
of tolerance signals seen as a function of the amount of time
spent on non-monitoring duties.' This way of viewing verformance
eliminates the difficult oroblem of specifying relative rewards
for monitoring and other duties. It allows an 2opropriate stra-
tegy to be chosen based on the fraction of time that must be de-
voted to other duties. The effect of such parameters as orocess
bandwidtihh and tolerance and discrete task set up cost and chunk
siz2 on monitorinj3 performance and normative time sharina stra-
tegies was shown. Future work will extend these models to mul-
tiole sa2cond ordesr processes and incorporate human limitations

such as observation noise and internal model errors.
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LA
.02
L0137
L0182
.331
.03h
.047
.A5%
.A52

050

Table

----out---- -conter-

1 2 3 4 5 q

.h97 .422 .192 .052 A .AN2
.469 .291 .15R% .073 .N31 .N19
.326 .218 . 1235 078 .MAa7 .135
.242 172 .118 .39 . %57 .051
.188% .142 .105 .080 .A85 150
.152 .121 . 897 .080 .A70 .A4”7
.128 .108 .092 .289 .N72 L271

1. vValuss of P(out|i,k) the onrobability the oroc~ss will be
out of tollerance next stage given the orocess was in
state 1, k stages ago for a first order process with

o =1.0, wu=.2 rad/stage 3nd T=1.7%.

R i=l to 3 4 5 6
to .7222 ) n ) )
to .14 ) % 0 1
to .018 a ] 1 ]
to .031 @ K/ ] 2
to .1348 2 2 2 2
to .A47 J 1) 2 3
to .059 U} [ 2 4
to .052 9 A 3 4
to .A449 2 1 4 4
to .965 () 1 A 5
>.0A%2 always always always AalwAays

2. The number of discrete tasks that will be done qiven the
process is observed in state i for various rang2s of re-
ward R if the myopic strateqy is followed for a first
order process. (o= 1.0, wu=0,.2 rad/stag~, T=1.75)

) R Strategy - dyq (1)
gain/stage '
i=1l to 3 4 5 5
.02 ) A 1 1 .A85
.04 2 2 1 2 9291
.06 0 )] 2 2 .10
.08 a 1 2 3 .149
.10 ) 1 3 4 .121
.12 2 1 4 5 . 134
.14 0 1 6 6 .147
.16 0 2 8 9 1R
.18 Y] 29 29 29 .180

Table 3. Steady state solution to the Adynamic programina model

with rewards.
(o0 =1.8, W= 0.2 rad/stage, T=1.75, P(out)=0,08)
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NUMBER OF STAGES, n,,
LEFT TO FINISH

DISCRETE TASKS
32 16 + + - - 0O : - + - + +
31 15
30 14
29 14 +' + 0O . . ¢ e o 4 <+
28 14 + O - . . e o o 4 <+
27 14 + + . (m] . ¢ e o 4 4
26 13
25/13 + + - 0O ¢« ¢ o 4+ +

NUMBER OF DISCRETE " DISPLAY INDICATOR

TASKS; m, LEFT
TO DO

Figure 1. Drawing of the gquantized monitoring display. A new

line was added every 2 seconds. The display was quan-
tized into 11 cells - .50 o wide. The display was out
of tolerance if it was in the outermost 2 cells indi-
cated with the + signs. At stages 32 and 27 this sub-
ject decided to 1look away from the display to do
discrete tasks for 2 and 1 stages respectively.

INTERNAL MODEL SENSORY | | ENVIRONMENT
OF ENVIRONMENT [*| SYSTEM
OPTIMAL
DECISION
¥ AcTION ' ,

Pigure 2. A block diagram of the human monitor (from Smallwood

(3)).
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looking away from the output of a first order filter
with bandwidth 0.2 rad/stage driven by white noise.
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e .036 0022
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h .052 0034
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k .074 0277

Figure 4. The fraction of observed out of tolerance signals

vs.

the fraction of time spent doing discrete tasks for
the myopic sampling strategy.
o =1.0, T=1.75,

(W =0.2 rad/stage,

8

P(out)=0.0A81)

FILTER BANDWIDTH

— w=.1 RAD/STAGE

-----w=.2 RAD/STAGE
— — w = .3 RAD/STAGE
—+— w = .4 RAD/STAGE

EXPECTED STEADY STATE
REWARD PER STAGE

I T O

| 1

0 .04 .08 .12

.16

.20

DISCRETE TASK REWARD, r

Pigure 5. The expected steady state reward per
non@toring and discrete tasks when an optimal sampling
policy is followed for a first order system.

o =1.0,T=1.75,

(wm=0.2 rad/stage,
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Pigure 6. Compatisoq of the monitoring performance of the myopic
and dynamic programing sampling strategies when perfor-

mance is plotted against the fraction of time devoted
to discrete tasks.

(w=0.2 rad/stage, o =1.8,T=1.75 and P(out)=p.p8e )
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Figure 12. The effect of a discrete task set up cost on monitor-
ing performance for the dynamic programing model with
a discrete task constraint.

(n=39 stages,

< =p.2 rad/stage,

P(out)=0.080)
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